concrete road desing ekim2015 İndirmek için tıklayınız.

Transkript

concrete road desing ekim2015 İndirmek için tıklayınız.
Concrete Road Design and Application Course
Notes
Beton yol tasarım ve uygulaması ders
notları:
Doç.Dr. Muhammet Vefa Akpınar
[email protected]
K.T.Ü İnşaat Mühendisliği Bölümü
Ulaştırma Kürsüsü, Trabzon
1
1.Mevcut yolların performansı
• Esnek –Rigit Üstyapı karşılaştırması
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
2
Betonarme Yollar Yeni Değil
Avrupa da ilk beton yollar; Breaslau’da
(şimdiki Polonya’da) .
M.Vefa
Akpınar
1900lerden günümüze
betonarme yollar
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
4
Valilik, Belediye ve Karayolları olarak
gelen bütçeyi nereye harcamalı?
• Yol Üstyapı Tipleri
1. Esnek Üstyapı
Tek Kat Sathi Kaplama
Çift Kat Sathi Kaplama
BSK
Ilık asfalt
2. Rijit Üstyapı
Beton ve Betonarme
Kaplama
3.Kompozit Üstyapı
M.Vefa Akpınar,
2013
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
1. Doğu Karedeniz Bölgesi beton yolları
uygulamaları: Sathi ve BSK yollar, 6 köy yol bağlantısı
(Gümüşhane)
M.Vefa Akpınar,
2013
HES çalışmaları ve servis yolları: Giresun. Ağır
taşıt yükleri
KTÜ-MVA grubu arazi çalışması
M.Vefa Akpınar,
2013
Taşıyıcı özelliği yok
M.Vefa Akpınar,
2013
Türkiye iklim koşullarına uygun değil. Karadenizde her
yıl yenilenir.
Belediye yolları, Trabzon
Hayali Garaj, Trabzon
Sinop Ayancık Maden Köyü heyelan sonrası
yol kaplaması. Sıkça karşılaşılan zemin
kaymaları
Trabzon Sürmene
Çamburnu Beldesi.
Donatısız beton (dik
Asfalt yol ve alttemel (dikyamaç)
yamaç)
Beton yolun altında
kayan toprağa rağmen
Trabzon Vakfıkebir, Kirazlık Köyü Dere Mevki
Sinop Ayancık Dolay Köyü 2010 yılında inşa edilen rijit
kaplama. Köy yolu oldukça dar ve geometrik standartlara
uygun değildir. Birçok bölgesinde yamaç akması nedeniyle
Her yıl asfalt
kaplamada yapılan
yol yenileme
ve bakım
çalışmaları
Trabzon
Beşikdüzü
Aksaklı
Köyyolu. Köyümüze yaklaşık 20 sene
önce yapılmış ortalama 20 cm
kalınlığındaki
beton
yolumuzun
bozulmaya
başlamasıyla
üzerine
yapılan ince sathi kaplama ile hizmet
vermeye devam etmektedir.
M.Vefa Akpınar,
2014
Rize İyidere Denizgören
Köyü, eski bozulmuş rijit
kaplama üzerine esnek
kaplama. 1995 yılında
yapılmıştır)
Kompozit Yollar:
Araklı Kalecik, Beton üstü ince asfalt kap
Trabzon
KTÜ kampus yollar betondan. 1955 den beri hizmet
ediyor
(Mayıs 2013 Çekildi)
M.Vefa Akpınar,
2013
KTÜ, Doğru drenaj (projelendirme) uzun ömürlü betonarme kaplama. Doğal
gaz için, yol 1 hafta da ancak kırılabildi. Önce kesme makinesi başaramayınca,
kato makinesi getirildi. Çok iyi kür yapılmış. Zemin de iyi sıkıştırılmış
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
24
•
•
•
•
Diğer İller, Elazığ
Baskil Kaymakamlığı
Karadüz Kaymakamlığı
Derince Kaymakamlığı
TÜRKİYE KÖY YOLLARI ENVANTERİ
Muhammet Vefa Akpınar
31.12.2012 İTİBARİYLA İLLERİN KÖY YOLU
ENVANTERİ- ALFABETİK
Ham
S.No
Tesviye Stabilize Asfalt
Beton Toplam
İli
Asfalt+
Ham+
Stabilize
Beton
Tesviye
/Toplam (%)
/Toplam (%)
/Toplam (%)
5.432
25.736
148.148
134.542
6.507
320.366
44,03
46,24
9,73
29
ELAZIĞ
4
177
2.448
1.942
0
4.571
42,49
53,56
3,96
30
ERZİNCAN
0
422
1.571
2.174
0
4.166
52,17
37,70
10,12
31
ERZURUM
0
583
5.162
1.072
0
6.817
15,73
75,72
8,55
32
ESKİŞEHİR
21
86
1.575
2.229
0
3.911
56,99
40,27
2,74
33
GAZİANTEP
13
112
778
1.879
6
2.787
67,63
27,91
4,46
34
GİRESUN
198
1.461
3.577
882
781
6.899
24,10
51,85
24,05
35
GÜMÜŞHANE
101
1.938
1.256
825
4
4.124
20,10
30,46
49,44
36
HAKKARİ
73
273
1.156
358
0
1.860
19,25
62,15
18,60
37
HATAY
48
230
1.260
2.028
531
4.097
62,46
30,75
6,79
38
IĞDIR
0
0
395
451
29
875
54,85
45,15
0,00
39
ISPARTA
0
226
417
1.390
12
2.045
68,51
20,42
11,07
40
İZMİR
205
388
502
3.086
288
4.469
75,50
11,23
13,27
S.No
İli
Ham
Tesviye Stabilize Asfalt
5.432
51 KONYA
25.736
148.148
134.542
Beton Toplam
6.507
320.366
Asfalt+
Ham+
Stabilize
Beton
Tesviye
/Toplam (%)
/Toplam (%)
/Toplam (%)
44,03
46,24
9,73
465
749
1.732
5.097
0
8.043
63,37
21,53
15,09
52 KÜTAHYA
8
351
1.437
2.116
0
3.912
54,09
36,73
9,18
53 MALATYA
122
1.561
2.681
2.157
0
6.521
33,08
41,12
25,80
54 MANİSA
119
289
1.139
4.053
91
5.691
72,82
20,01
7,18
55 MARDİN
351
826
1.462
1.867
36
4.541
41,90
32,18
25,91
56 MERSİN
0
151
1.691
3.280
0
5.122
64,04
33,01
2,95
57 MUĞLA
9
39
975
3.321
0
4.344
76,45
22,44
1,10
13
408
796
1.535
0
2.751
55,79
28,92
15,30
0
31
217
1.191
0
1.438
82,82
15,06
2,13
73
127
641
1.092
62
1.995
57,84
32,13
10,03
58 MUŞ
59 NEVŞEHİR
60 NİĞDE
Ham
S.No
Tesviye Stabilize Asfalt
Beton Toplam
İli
Asfalt+
Ham+
Stabilize
Beton
Tesviye
/Toplam (%)
/Toplam (%)
/Toplam (%)
5.432
25.736
148.148
134.542
6.507
320.366
44,03
46,24
9,73
61
ORDU
112
430
7.997
1.538
219
10.296
17,07
77,68
5,26
62
OSMANİYE
0
64
1.644
1.068
59
2.834
39,75
58,01
2,24
63
RİZE
254
453
3.673
319
1.585
6.285
30,30
58,45
11,25
64
SAKARYA
0
0
734
1.975
33
2.742
73,23
26,77
0,00
65
SAMSUN
0
0
5.397
3.234
17
8.648
37,59
62,41
0,00
66
SİİRT
86
4
811
882
4
1.787
49,55
45,42
5,03
67
SİNOP
65
534
3.327
1.122
10
5.058
22,38
65,78
11,84
68
SİVAS
0
676
4.746
2.623
15
8.060
32,73
58,88
8,39
69
ŞANLIURFA
0
6
3.651
3.686
0
7.343
50,20
49,72
0,08
70
ŞIRNAK
171
374
320
1.027
106
1.998
56,72
16,00
27,28
Türkiye yollarında (TCK ve belediyler
hariç)=560646 (320.366x0.25x7)m3
beton ihtiyaç var.
Ham
S.No
Tesviye Stabilize Asfalt
Beton Toplam
İli
5.432
25.736
148.148
134.542
6.507
320.366
Asfalt+
Ham+
Stabilize
Beton
Tesviye
/Toplam (%)
/Toplam (%)
/Toplam (%)
44,03
46,24
9,73
71 TEKİRDAĞ
6
60
436
1.209
0
1.711
70,66
25,48
3,86
72 TOKAT
0
0
2.230
1.951
102
4.283
47,93
52,07
0,00
12.172
15,98
76,19
7,83
0
953
9.274
1.22
2
723
74 TUNCELİ
431
1.101
1.248
554
2
3.336
16,67
37,41
45,92
75 UŞAK
170
75
1.058
1.361
19
2.683
51,44
39,42
9,13
76 VAN
2
254
3.817
1.685
0
5.758
29,26
66,29
4,45
77 YALOVA
0
0
78
348
0
426
81,69
18,31
0,00
78 YOZGAT
ZONGULDA
79 K
0
212
1.551
2.563
0
4.326
59,25
35,85
4,90
10
43
1.098
1.831
110
3.092
62,77
35,52
1,71
73 TRABZON
TOPLAM 5.432
25.73 148.1 134. 6.50 320.3
6
48
54 7
66
44,03
46,24
9,73
• Kazakistan’da gerçekleştirilecek olan beton yol
projesi
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
31
Gürcistan İpek Yolu
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
32
KARAYOLLARI GENEL MÜDÜRLÜĞÜ
KARAYOLLARI 1. BÖLGE MÜDÜRLÜĞÜ, İZMİT – YALOVA D-130 DEVLET YOLU GÖLCÜK –
ALTINOVA KESİMİ, KARAMÜRSEL ŞEHİR GEÇİŞİ KM: 38+400 – 40+000
BETON YOL UYGULAMASI ÇALIŞMA RAPORU
M.Vefa
Akpınar
Rijid ve Esnek Üstyapılar
4 TON
4 TON
Basınç gerilmesi < 7-20 KPA
 50-70 KPA
M.Vefa Akpınar,
2013
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
Concrete Pavement Types
• Jointed Plain
– Undoweled
– Doweled
• Jointed Reinforced
• Continuously
Reinforced
Plan
8 – 15 ft
Profile
or
Yap-İşlet: Özel sektör betonarme yolu tercih ediyor.
(h > 25 cm)
Yüksek
kapasiteli yollar
için
(h <20 cm)
Gerek yok .
Düşük
Kapasiteli yollar
için
Tasarımları ve standartları 25 yıldır
Dünyada uygulanmaktadır.
mesafe 500 mm
8 adet
kayma demiri
Ø 25 mm
uzunluk 600 mm
4350 mm
mesafe 350 mm
bağlantı demiri
Ø 16 mm
uzunluk 800 mm
mesafe 1500 mm
mesafe 750 mm
4500 mm
4500 mm
4350 mm
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
41
Load stresses
Thickness
Curling/Warping stresses
Jointing
Volume change stresses


Higher k-value will lower
deflections
Load transfer will lower deflections
Load Transfer (slabs ability to share its load with neighboring slabs)

Dowels

Aggregate Interlock

Edge Support
◦
◦
◦
◦
Tied curb & gutter
Integral curb & gutter
Parking lane
Tied concrete
L= x
U= 0
Poor Load Transfer
L= x/2
Good Load Transfer
U = x/2
L= x
U= 0
The slabs ability to
share its load with
its neighboring slab
◦ Dowels
Poor Load Transfer
High Traffic Volumes
(Pavements > 8 in.)
(> 120 Trucks/day)
◦ Aggregate Interlock
L= x Good Load Transfer
U= x
Low Traffic Volumes
(Pavements < 7 in.)
Load Transfer Efficiency
Load Transfer Mechanism
LTE, %
aggregate interlock
stabilized base
30 - 80
50 - 90
dowel bars
80 - 95
Shear between aggregate particles
below the initial saw cut
Conditions for Pumping



Subgrade soil that will go
into Suspension
Free water between slab
and subgrade
Frequent heavy wheel
loads / large deflections



Lengths from 15-18
in.
6.0 in. min.
embedment length
Diameter
◦ 1.00 - 1.25 in. for SLR

Epoxy or other
coating used in
harsher climates for
corrosion protection

Dowels recommended when
ADTT is greater than or
equal to 80:
◦ If pavement thickness is 6” or less
dowels not recommended
◦ If pavement thickness is 6.5” to
7.5” use 1” dowels
◦ If pavement thickness is 8” or
greater use 1¼“ dowels
Faulting Model
Faulting, in
0.20
Dense-graded base
No dowel
0.15
Permeable base
No dowel
0.10
Dense-graded base
1-in dowel
0.05
0.00
Dense-graded base
1.25-in dowel
0
5
10
Traffic, million ESALs
15
20
CRCP (sürekli donatılı güçlendirilmiş
betonarme yol)

Smoothness
◦ 10-20 ft. Straightedge
◦ Profilograph Index

Texture
◦ Speeds less than 40
mph
 Burlap Drag
 Astroturf Drag



Curing is one of the most
important steps in quality
concrete construction and one
of the most neglected.
Effective curing is absolutely
essential for surface durability.
Durability = resistance to
freeze-thaw
Curing requires adequate —



Moisture
Temperature
Time
If any of these factors are
neglected, the desired
properties will not develop
Evaporation from water
surface
Partially saturated
Curing
membrane
Saturated
Concrete



The simplest, most economical and widely used
method is a liquid membrane which is sprayed on
the surface of a slab as soon as possible after
finishing.
Apply at manufacture’s rate of coverage.
Perform field check to verify application rate.
Increased
 Strength
 Watertightness
 Abrasion resistance
 Freeze-thaw resistance
 Volume stability
Laying technology
Laying technology
dowel setting machine
Sürekli donatılı betonarme yol
Araç Cinsi
Treyler
Kamyon
Otobüs
Orta Yük. Ticari Taşıt
Otomobil
Sayı
1.822
2.590
536
1.220
12.131
KARAMÜRSEL ŞEHİR GEÇİŞİ ANAYOL TİP ENKESİTİ
( KM:38+400 - 40+000 )
CL
3.50
3.50
1.00 1.00 1.00 1.00
3.50
3.50
0.50
2.00
0.50
19.00 m
2.00
Telçit
%1.5
%2
%2
ÜSTYAPI TABAKA KALINLIKLARI
Beton Plak Tabakası = 30 cm.
Binder
= 6 cm.
PMT
= 20 cm.
%1.5
ÖLÇEK : 1 / 100
Damperli Kamyonlarla Taşınan
Betonun Finişerin Önüne
Dökülmesi
Finişherin Her 4,5 m. de Çakılan
Kot Çubuklarından Duyargaları
Vasıtası ile Kot Alarak Çalışması
Ekskavatör ile Betonun Yayılması
Laying technology
longitudinal smoother
Laying technology
transverse „steel-broom line“
Laying technology
application curing-agent
 Field
and Laboratuary Tests
Modulus of Subgrade Plate-Load Test
Reaction, k-value
Reaction
Plate load on subgrade
k = Plate deflection on subgrade
5.0 psi
k = 0.5 in = 100 psi / in.
Stacked Plates
Pressure Gauge
Subgrade

Plate-load test is rarely performed
◦ time consuming & expensive

Estimate k-value by correlation to other tests
◦ e.g. California Bearing Ratio (CBR) or R-value tests

Lean concrete subbases increases k-value
substantially
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
81
Correlated k-values for Subgrade Support
Historical
k-values
(pci)
California
Bearing Ratio
(CBR), %
Resistance
Value
(R-value)
(ASTM D 1183)
(ASTM D 2844)
Low
75 - 120
2.5 - 3.5
10 - 22
Sand and sand-gravel
with moderate
silt/clay
Medium
130 - 170
4.5 - 7.5
29 - 41
Sand and sand-gravel
with little or no
silt/clay
High
180 - 220
8.5 - 12
45 - 52
Type
Fine-grained with
high amounts of
silt/clay
Amount of
Support
Design Summary
◦ Need to know if pavement is on:
 Subgrade (k  25 MPa/m (100 psi/in.)),
 Granular subbase (k  40 MPa/m (150 psi/in.)),
 Asphalt treated subbase (k  80 MPa/m (300 psi/in.))
 Cement treated/lean concrete subbase (k  125 MPa/m
(500 psi/in.)).
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
83

Plate-load test is rarely performed
◦ time consuming & expensive

Estimate k-value by correlation to other tests
◦ e.g. California Bearing Ratio (CBR) or R-value tests

Lean concrete subbases increases k-value
substantially
Correlated k-values for Subgrade Support
Type
Fine-grained with
high amounts of
silt/clay
Sand and sandgravel with
moderate
silt/clay
Sand and sandgravel with little
or no silt/clay
Historical
k-values
(pci)
California
Bearing Ratio
(CBR), %
Resistance
Value
(R-value)
(ASTM D 1183)
(ASTM D 2844)
Low
75 - 120
2.5 - 3.5
10 - 22
Medium
130 - 170
4.5 - 7.5
29 - 41
High
180 - 220
8.5 - 12
45 - 52
Amount of
Support
Design Summary
◦ Subgrade strength is not a critical element in the
thickness design.
 Has little impact on thickness.
◦ Need to know if pavement is on:
 Subgrade (k  25 MPa/m (100 psi/in.)),
 Granular subbase (k  40 MPa/m (150 psi/in.)),
 Asphalt treated subbase (k  80 MPa/m (300 psi/in.))
 Cement treated/lean concrete subbase (k  125 MPa/m
(500 psi/in.)).





Portland Cement
Materials
Supplementary
Cementitious
Materials
Aggregates
Chemical
Admixtures
Water
Testing
Recommended Air Contents for Durable Concrete
Maximum size aggregate
Total target air content, percent *
Severe
Exposure
Moderate
Exposure
in.
mm
3/8
9.5
7.5
1/2
12.5
7
3/4
19.0
6
5
1
25.0
6
4.5
1½
37.5
5.5
4.5
2
50.0
5
4
6
Suggest 6.5 5.5
Maximum Permissible Water-Cement Ratio for Durable
Concrete Pavement
Type of exposure
Freezing/thawing
with deicing chemicals
Severe sulfate exposure
[water-soluble sulfate (SO4) in
soil > 0.20 % by weight]
Moderate sulfate exposure
[water-soluble sulfate (SO4) in
soil of 0.10 to 0.20 % by
weight]
Maximum water-cementitious
ratio by weight
0.45
INDOT max 0.42
0.45
0.50
C
T
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
92
Street Class Description
Two-way
Average Daily
Traffic
(ADT)
Two-way Average
Daily Truck
Traffic (ADTT)
Less than 200
2-4
4.0 - 5.0 in.
(100-125 mm)
200-1,000
10-50
5.0 - 7.0 in.
(125-175 mm)
Typical Range
of Slab
Thickness
Light
Residential
Short streets in subdivisions and similar
residential areas – often not throughstreets.
Residential
Through-streets in subdivisions and
similar residential areas that
occasionally carry a heavy vehicle
(truck or bus).
Collector
Streets that collect traffic from several
residential subdivisions, and that may
serve buses and trucks.
1,000-8,000
50-500
5.5 - 9.0 in.
(135-225 mm)
Business
Streets that provide access to shopping
and urban central business districts.
11,000-17,000
400-700
6.0 - 9.0 in.
(150-225 mm)
Industrial
Streets that provide access to industrial
areas or parks, and typically carry
heavier trucks than the business class.
2,000-4,000
300-800
7.0 - 10.5 in.
(175-260 mm)
Arterial
Streets that serve traffic from major
expressways and carry traffic through
metropolitan areas. Truck and bus
routes are primarily on these roads.
4,000-15,000
(minor)
4,000-30,000
(major)
300-600
6.0 - 9.0 in.
(150-225 mm)
7.0 - 11.0 in.
(175-275 mm)
700-1,500
Muhammet Vefa Akpınar, 2014
100/99
M.Vefa Akpınar, 2013
101/99
5.5”

Flexural Strength
(Modulus of Rupture,
ASTM C 78)
Third-point Loading
◦ Avg. 28-day strength in
3rd-point loading

Other Factors
◦ Concrete Strength Gain
with Age
◦ Fatigue Properties
d=L/ 6
L/3
Span Length = L
Compressive Strength f’c
Head of
Testing
Machine
S’c = 8-10 f’c
f’c = Compressive Strength
(psi)
S’c = Flexural Strength (psi)
Cylinder
Depth
C
T


Compressive strength: ~4000
psi
Flexural strength: ~600 psi
Strength Correlations
MR = 7.5 x f'c^(0.5)
MR = 9 x f'c^(0.5)
MR = 10 x f'c^(0.5)
800
750
Flexural Strength, psi
700
650
600
550
500
450
400
350
300
2000
2500
3000
3500
4000
4500
Compressive Strength, psi
5000
5500
6000
Percentage of 28-day Strength
160
If specify minimum flexural
strength at 28-day of 550 psi
& allow 10% of beams to fall
below minimum:
140
120
100
Type I (GU)
Type III (HE)
80
60
40
3d
7d
28d
3m
Age
1y
3y 5y 10y 20y
STEP 1
Estimate SDEV:
9% for typical ready mix.
SDEV = 550 * 0.09 = 50 psi
STEP 2
S’c design = S’c minimum + z *
SDEV
S’c design = 550 + 1.282 * 50
S’c design = 614 psi
Comparison of f’c, MR, and Required Thickness
Compressive
Strength (psi)
3000
4000
5000
Flexural Strength Design Thickness
(psi)
(inches)
450 – 550 (500)
6.5 (6.43)
PCA 7.0
510 – 630 (600)
5.5 (5.25)
PCA 6.5
570 – 710 (700)
5.0 (4.86)
PCA 6.0
Life 30 years, Collector (2), k-value 162, Reliability 80 %, plus C & G, 2 % annual growth
New Regulations
Concrete requirements
Construction
class
1
Minimum values of 28-day-oldconcrete
Compressive strength
on
the cube with 20 cm
edge lengths
Beam-tensile
strength
[N/mm²]
[N/mm²]
[mm]
4
5
2
3
traffic load
SV, I - IV
ZTV Beton Tab.1
Size of aggregates-groupes
35
40
5,5
0/2, 2/8, > 8
0/4, 4/8, > 8
0/2, < 8*
*for 8 mm maximum aggregate size
V - VI
25
30
4,0
0/4, > 4
- Cement content of construction class SV, I, II, III: > 350 kg/m³
- Water-cement ratio in tests for construction classes SV, I, II, III: < 0,45
- Mixing time: > 45 seconds
New Regulations
Pavement construction:
- The concrete pavement can consist of one or two layers
- Thickness of top layer > 4 cm
- The thickness of total pavement depends on the RStO 01
(RStO = Guidelines for the Standardization for Pavement Structures for Traffic Areas)
3 examples for construction class SV (heavy traffic load)
concrete
pavement
geotextil
cement stabilized
base (HGT) 120
subbase
frost-resistant
material
45
MN/m2
27 cm
concrete
pavement
asphalt stabilized
base
120
15 cm
42 cm
subbase
frost-resistant
material
45
MN/m2
26 cm
10 cm
concrete
pavement
150
crushed-rock
base
36 cm
30 cm
subbase
frost-resistant 45
material
MN/m2
30 cm
60cm
New Regulations
Alternative concrete construction method:
2 layer-concrete on
crushed-rock
base
4 cm = top
layer
standard-pavement structure
27 cm
geotextil
15 cm
42 cm
concrete
pavement
30 cm
concrete
pavement
30 cm
crushed-rock base
(unbound base)
60 cm
frost-resistant
material
cement stabilized
base (HGT)
frost-resistant
material
26 cm = bottom layer
The advantages of thick concrete pavement with a thin upper layer of
concrete are:
- Improved skid resistance
- Reduction of noise
- Guarantee of covered dowels
- Use of recycled broken-up material in the lower concrete layer
Laying technology
Laying technology
concrete pavement - two layers slipform paver
Laying technology
dowel setting machine
Laying technology
control of reinforcement (slipform paver)
Joints
Example of BAB 5 expresshighway:
concrete pavement structure
+ positions of dowels and tie bars
Longitudinal contraction joints, 3 or 5 tie bars per slab
Transverse contraction joint,
with dowels Spacing
of dowels 25 cm
12 %
4,50
3,75
4,25
12,50 m
internal
lane
central
lane
2,50
2,50 m
external
lane
shoulder
lane
concrete pavement
26 cm (19+7)
cement stabilized
base
frost-resistant gravel
and sand material
Joint technology
dummy joint-cut (to prevent wild cracks)
bituminous joint filler
or joint profile
notch
cement stabilized base (HGT)
Still uses Unified Soil Classification (USC)
system
◦ Reference to ASTM 2487
Unified Soil Classification System
60
GW
GP
GM
GC
SW
SP
SM
SC
CL
ML
OL
CH
MH
OH
PT
50
PLASTICITY INDEX (PI)

40
30
20
MH - OH
10
CL - ML
ML - OH
0
0
10
20
30
40
50
60
LIQUID LIMIT (LL)
70
80
90
100
110
13
3
Soil Strength Parameter for RIGID pavement
Resilient Modulus E (psi) or
Modulus of Subgrade Reaction – k-value (pci)
◦ Design value – “conservative selection”
◦ K-value can be estimated from CBR
1500 CBR 
k

26


0.7788
(k in pci)
13
4
Seasonal Frost
◦ Same Frost Groups (FG-1, FG-2, FG-3 & FG-4)
◦ Determination of Depth of Frost Penetration
 Based on local Engineering experience
 i.e. local construction practice, building codes, etc.
 No nomographs or programs provided
13
5
13
6
Typical Flexible Pavement
Progressively stronger layers
Hot-Mix Asphalt Surface
Base Course (Minimum CBR=80)
(May Require Stabilization)
Subbase (Minimum CBR=20)
(May Require Stabilization)
Frost Protection (As Appropriate)
Subgrade
13
7
Muhammet Vefa Akpınar, KTÜ-İnşaat
Mühendisliği
13
8
Wheel Load
Horizontal Strain and Stress
at the bottom of the asphalt
Area of Tire Contact
Wearing Surface
Base Course
Must also guard
against potential
failure in base
layers
Subbase
Subgrade
Approximate Line of
Wheel-Load Distribution
Vertical Subgrade Strain
Subgrade Support
13
9
Wheel Load
Horizontal Strain and Stress
at the bottom of the asphalt
Area of Tire Contact
Wearing Surface
Base Course
Must also guard
against potential
failure in base
layers
Subbase
Subgrade
Approximate Line of
Wheel-Load Distribution
Vertical Subgrade Strain
Subgrade Support
14
0
Flexible Pavement Design
Wheel Load
LAYERED ELASTIC METHOD
CBR Method
SURFACE
ES, S, h
BASE
EB, B, hB
CBR
SUBBASE
ESB, SB hSB
CBR
SUBGRADE
ESG, SG hSG
CBR
E = Elastic Modulus
h = thickness
μ = Poisson’s Ratio
Not Defined
Subgrade Support
CBR = California Bearing Ratio
14
1
Flexible Pavement Design
LAYER
AC Surface
PCC Surface
Aggregate Base
Aggregate Subbase
AC Base
AC Base (min)
AC Base (max)
CTB (min)
CTB
CTB (max)
Undefined (min)
Undefined (max)
Rubblized PCC (min)
Rubblized PCC (max)
** Still subject to change
ITEM
E (psi)
P401/403
200,000
P501
4,000,000
P209
MODULUS
P154
MODULUS
P401/403
400,000
Variable
150,000
Variable
400,000
P301
250,000
P304
500,000
P306
700,000
1,000
4,000,000
EB66
200,000*
EB66
400,000*
POISSON’S
0.35
0.15
0.35
0.35
0.35
0.35
0.35
0.20
0.20
0.20
0.35
0.35
0.35
0.35
FAA EQUIV
NA
NA
NA
NA
1.6
1.2
1.6
NA
NA
NA
NA
NA
NA
NA
Subgrade
Characteristics
NATIONAL AIRPORT PAVEMENT TEST FACILITY
E-CBR Equation
E = 1500 X CBR
60,000
E= 1500CBR
50,000
Typical CBR range
E (psi)
40,000
30,000
E = 3363.2(CBR)0.6863
R2 = 0.9727
20,000
10,000
0.0
5.0
10.0
15.0
CBR
20.0
25.0
30.0
35.0
40.0
14
3
Base Layer Characteristics
◦ Minimum material requirements
 P-209, P-208, P-211, P-304, P-306, P-401, P-403, &
rubblized PCC
◦ Design assumes minimum strength – CBR > 80
◦ Aggregate layer modulus dependent on thickness
 Modulus calculated by FAARFIELD is dependent on
thickness
◦ Stabilization required - airplane gross weight >
100,000 lbs
◦ Minimum thickness requirements – by airplane
14
4
Hot-Mix Asphalt Surface
Typical Rigid Pavement
Base Course (Minimum CBR=80)
(May Require Stabilization)
Subbase (Minimum CBR=20)
Portland
Cement
Concrete (PCC)
(May Require
Stabilization)
Frost Protection
Subbase
Course **
Subgrade
(As Appropriate)
Subgrade
** Stabilization required when airplanes exceeding 100,000 lbs are in the traffic mixture.
145
CRITICAL LOAD CONDITION ASSUMPTIONS
Maximum stress at pavement edge
25% Load Transfer to adjacent slab
LOAD
Maximum Stress
Bottom of Slab
Subgrade Support
14
6
CRITICAL LOAD CONDITION ASSUMPTIONS
Maximum stress at pavement edge
25% Load Transfer to adjacent slab
LOAD
Maximum Stress
Bottom of Slab
Subgrade Support
14
7
TOP DOWN CRACKING DUE TO EDGE OR CORNER
LOADING NOT INCLUDED IN DESIGN
Maximum stress due to corner or edge loading condition
Risk increases with large multi-wheel gear configurations
These conditions may need to be addressed in future procedures
Maximum Stress
Top of Slab
LOAD
14
8
Subgrade Characteristics
k-value can be estimated from CBR value
1500  CBR 
k

26


0.7788
k = Foundation modulus of the subgrade, in pci
14
9
Portland Cement Concrete Layer Characteristics
◦ Minimum material requirements
 P-501
◦ Flexural Strength as design variable
 FAA recommends 600 – 700 psi for design purposes
 FAARFIELD will allow 500 – 800 psi
 ASTM C 78 Flexural Strength of Concrete (Using Simple
Beam with Third-Point Loading)
 Modulus fixed at 4,000,000 psi
◦ 6 Inch minimum thickness requirements
◦ Thickness rounded to the nearest 0.5 inch
15
0
Chapter 3 Section 3 – Rigid Pavement Design
Low Strength subgrade
High Strength subgrade
15
1
Chapter 3 Section 3 – Rigid Pavement Design
Low Strength subgrade
High Strength subgrade
15
2
Rigid Pavement Joint Spacing
TABLE 3-16. RECOMMENDED MAXIMUM JOINT SPACINGS RIGID PAVEMENT WITH OR WITHOUT STABILIZED SUBBASE
Part II, with Stabilized Subbase
Part I, without Stabilized Subbase
Slab Thickness
Joint Spacing1
Slab Thickness
Joint Spacing1
Inches
Millimeters
Feet
Meters
Inches
Millimeters
Feet
Meters
6
150
12.5
3.8
7-9
175-230
15
4.6
8–10
203-254
12.5
3.8
>9
>230
20
6.1
11-13
279-330
15
4.6
14-16
356-406
17.52
5.32
>16
>406
20
6.1
15
3
Cost
Performance
Now Using Mechanistic-Empirical Design (MEPDG) to Optimize
ESNEK ÜSTYAPILARIN
PROJELENDİRİLMESİ
Projeje Süresinin seçimi
Performans (IRI ,PSI, RN)
Yol bakım onarım maliyetleri
5
.
0
2
.
5
1
.
0
Min.
Min. Kabul
Kabul edilebilir
edilebilir
Seviye
Seviye
Proje (Performans)
süreleri
Analiz
süresi
Min.
Seviye
YIL

Benzer belgeler

CURRICULUM VITAE AHMET H. AYDILEK

CURRICULUM VITAE AHMET H. AYDILEK Leachate Collection System Constructed with Scrap Tires”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 8, pp. 990-1000. 15. Kaplan, H. and Aydilek, A.H. (2006). “Se...

Detaylı

18 October 2012 10:00-11:30 Hall: Kemal Kurdaş Sess

18 October 2012 10:00-11:30 Hall: Kemal Kurdaş Sess Monotonic triaxial tests on fiber reinforced sand

Detaylı

KMS / 2016 - KMS Mobilya Bağlantı Sistemleri

KMS / 2016 - KMS Mobilya Bağlantı Sistemleri Sunduğumuz ürün kataloğunun faydalı olması ümidiyle... KMS; Kalite ve Memnuniyette Standart... Established in 2002, KMS provides the most high quality and innovative products in furniture connectio...

Detaylı