BALLSCREW CATALOG

Transkript

BALLSCREW CATALOG
BALLSCREW CATALOG
ISO 9001 CERTIFIED
PRECISION MOTION INDUSTRIES, INC.
4, LANE 241, CHUNG SHAN RD.,
SHEN KANG HSIANG,
TAICHUNG HSIEN 429, TAIWAN
TEL: +886-4-2528-2984
FAX: +886-4-2528-3392
E-mail: [email protected]
http://www.pmi-amt.com
The World's Best Ballscrews You Can Trust
BET/MD01/06.01
1. Introduction
1
2. Features of PMI Ballscrews
3
3. Lead Accuracy and Torque
3.1 Lead accuracy
5
3.2 Preloading torque
7
3.3 Tolerances on various areas of PMI Ballscrew
8
4. Design of Screw Shaft
4.1 Production limit length of screw shaft
9
4.2 Method for mounting
10
4.3 Permissible axial load
11
4.4 Permissible rotation speed
11
4.5 Notes on screw shaft design
12
5. Design of Ball Nut
5.1 Selecting the type of Nut
5.2 Calculating the axial load
5.3 Notes on Ball Nut design
13
13
14
6. Rigidity
6.1 Axial rigidity
15
6.2 Positioning accuracy
19
7. Life
7.1 Life of Ballscrew
20
7.2 Fatigue life
20
7.3 Permissible load on grooves
21
7.4 Materials and hardness
21
7.5 Heat Treating Inspection certificate
22
7.6 Lubrication
24
7.7 Dustproof
24
8. Driving Torque
8.1 Operating torque of Ballscrew
8.2 Driving torque of motor
25
9. Selecting Correct Type of Ballscrew
27
10. Nomenclature of PMI Ballscrew
10.1 Nomenclature of external circulation Ballscrew
10.2 Nomenclature of internal circulation Ballscrew
28
11. Sample Process of Selecting the Type of Ballscrew
11.1 C utting machine
11.2 High speed porterage apparatus
11.3 Vertical porterage apparatus
12. PMI Ballscrew with Hollow Cooling System
13. PMI Precision Ground Ballscrew
13.1 External ball circulation
13.2 Internal ball circulation
13.3 High lead
14. Rolled Ballscrew
25
29
31
36
39
43
47
69
80
87
INTRODUCTION
PMI was established in 1990.
It has been concentrated in manufacturing of Ballscrew since then.
It is PMI's important achievement as to produce high speed Ballscrews with
specially designed ball recirculating tube to ensure balls smooth running during
recirculation, hence to reduce noise. Also the special hollow cooling system to
help Ballscrews to be easily controlled in temperature raise at low cost.
In 2003, PMI established its subdivision company- Advanced Motion
Technologies, Corp. (AMT) and started to produce the Linear Guideways.
The superior techniques, good quality and high production efficiency have made
PMI one of the leading Linear motion system manufacturers in the world.
1
PMI basic information
Capital:
NT$ 281,000,000.
Employees: 240 persons (2005.12)
Location:
SHEN KANG HSIANG, TAICHUNG HSIEN, TAIWAN
The history of PMI:
1990 Company was established with capital of NT$ 7,000,000.
1991 Produced the first Ballscrew (commercial grade.)
1995 Capital Increased to NT$ 40,000,000.
Started to produce precision ground Ballscrew.
1996 The first high precision Japanese Mitsui Seiki grinding machine joined
production line.
1997 ISO 9001 certified.
1998 Capital increased to NT$ 120,000,000.
1999 Capital increased to NT$ 180,000,000.
2000 Started to produce rolled Ballscrew.
2002 Capital increased to NT$ 225,000,000.
2003 Established subdivision company-Advance Motion Technologies Corp.
(AMT) and started to produce Linear Guideways.
Capital increased to NT$ 281,000,000.
2
FEATURES of
BALLSCREWS
(1) High reliability:
PMI has accumulated many years experience in production managing. It covers the whole
production sequence, from receiving the order, designing, material preparation, machining, heat
treating, grinding, assembling, inspection, packaging and delivery. The systemized managing ensures
high reliability of PMI Ballscrews.
(2) High accuracy:
PMI Ballscrews are machined, ground, assembled and Q.C. inspected under the constant
temperature control (20
certificate.
) to ensure high precision of Ballscrews. Fig.2.1 accuracy inspection
BALLSCREW INSPECTION CERTIFICATE
Inspected by HEWLETT PACKARD Laser Measuring System
Lead Error( m)
Travel (mm)
:Means where is Max.e and Min.e
:Means where is Max.e300 and Min.e300
Cumulative representative lead T+E:-27.90 m
T relative lead deviation e: 4.84 m
Total
Lead deviation in random 300mm e300: 4.01 m
Preload torque(without wipper)Tq:3.0-3.9Kgf-cm
ACCURACY GRADE: C1
REMARK:
INSPECTOR:
Fig.2.1 Accuracy inspection certificate.
(3) Long durability:
PMI Ballscrews are made of German Alloy steels, which are well quenching and tempering treated
for good rigidity, along with suitable surface hardening to ensure long durability.
3
(4) High working efficiency:
Balls are rotating inside the Ballscrew nut to offer high working efficiency. Comparing with the
traditional ACME screws, which work by friction sliding between the nut and screw, the Ballscrews
needs only 1/3 of driving torque. It is easy to transmit linear motion into rotation motion.
(5) No backlash and with high rigidity:
The Gothic profile is applied by PMI Ballscrews. It offers best contact between balls and the
grooves. If suitable preload is exerted on Ballscrew hence to eliminate clearance between the ball nut
and screw and to reduce elastic deformation, the ballscrew shall get much better rigidity and accuracy.
Fig.2.2 Gothic arch thread
4
LEAD ACCURACY AND TORQUE
3.1 Lead Accuracy
Travel length L
+
Nominal Travel
0
Specified Travel
e
(T+E)
(T+E) a
-
p
T
Lead Deviation
PMI's precision ground Ball Screws are controlled in accordance with JIS B 1192.
The permissible values and each part of definitions are shown below.
e
E
1 Rev.
e 300
300mm
Actual Travel
Cumulative Representative Lead
Fig.3.1 Technical Terms Concerning the Lead
Table3.1 Terms
Cumulative representative lead.
A straight line representing the tendency of the cumulative actual lead.
This is obtained by least square method and measured by laser system.
Permissible value.
Actual value.
Specified travel.
This value is determined by customer and maker as it depends on different application
requirements.
Accumulated reference lead deviation.
This is allowable deviation of specified travel. It is decided by both of the accuracy grade and
effective thread length.
Total relative lead variation
Maximum width of variation over the travel length.
Lead deviation in random 300 mm.
Lead deviation in random 1 revolution
5
rad.
Effective thread length (mm)
Table 3.2 Accumulated reference lead deviation ( E) and total relative variation (e)
GRADE
OVER UP TO
C0
C1
C2
C3
C4
C5
E
e
E
e
E
e
E
e
E
e
E
e
315
4
3.5
6
5
5
7
12
8
12
12
23
18
315
400
5
3.5
7
5
7
7
13 10
14
12
25
20
400
500
6
4
8
5
8
7
15 10
16
12
27
20
500
630
6
4
9
6
9
7
16 12
18
14
30
23
630
800
7
5
10
7
10
7
18 13
20
14
35
25
800
1000
8
6
11
8
11
8
21 15
22
16
40
27
1000
1250
9
6
13
9
13
9
24 16
25
18
46
30
1250
1600
11
7
15 10
15 10
29 18
29
20
54
35
1600
2000
18
11
18 11
35 21
34
22
65
40
2000
2500
22 13
21 13
41 24
40
25
77
46
2500
3150
26 15
25 15
50 29
48
29
93
54
3150
4000
32 18
30 18
62 35
57
34
115
65
4000
5000
36 21
76 41
69
40
140
77
5000
6300
85
48
170
93
C6
C7
C10
0.025
0.050
0.120
300mm
300mm
300mm
Table 3.3 Accuracy grade
Variation in random 300 mm (e300) and wobble (e2 )
e
300
C0
C1
C2
C3
C4
3.5
5
3.5
5
7
8
12
C0
C1
C2
C3
C4
3
4
3
4
8
C5
C6
18
18
C7
50
25
50
6
4
6
8
6
3.2 Preloading Torque
The preloading torque of the Ball Screw is controlled in accordance with JIS B 1192.
Starting actual torque
Reference torque
Actual torque fluctuation (-)
Torque fluctuation
(+)
(-)
Mean actual torque
Nut effective moving distance
0
Actual torque fluctuation (-)
Nut effective moving distance
Reference torque
Friction torque
Actual torque
(-)
(+)
Starting actual torque
Actual torque
Torque fluctuation
Fig.3.2 Technical terms concerning preload
Preload
: The goal in preload is to clear axial play and increase rigidity of Ballscrew.
Reference to P.17
Preload torque
: Torque needed to continuously turn a Ballscrew with preload with no other load applied to it.
Reference torque
: Preload torque set as a goal.
Torque fluctuation : Fluctuation from a goal value of the preload torque. Defined as positive or negative in respect to the
reference torque.
Rating of torque
fluctuation
: Rating on reference torque and torque fluctuation.
Actual torque
: Preloaded dynamic torque measured by using an actual value of Ball Screw.
Mean actual torque : In the effective thread length, the net reciprocate to measure the maximum actual torque and minimum
actual torque are doing count mean.
Actual torque
fluctuation
Rating
g of Actual
torque
q fluctuation
7
: In the effective thread length, the net reciprocate to measure the maximum fluctuant value.
: Rating on mean actual torque and actual torque fluctuation.
Table3.4 Allowable range of preload torque
Effective Thread Length (mm)
Reference torque
4000 or less
(kgf . cm)
OVER OR LESS
4
2
Over 4000 but less than 10000
Slenderness ratio: 60 or less
Accuracy grade
Slenderness ratio: 40 or less
Accuracy grade
Accuracy grade
C0
C1
C3
C5
C0
C1
C3
C5
C1
C3
C5
̈́30%
̈́35%
̈́40%
̈́50%
̈́40%
̈́40%
̈́50%
̈́60%
4
6
̈́25%
̈́30%
̈́35%
̈́40%
̈́35%
̈́35%
̈́40%
̈́45%
6
10
̈́20%
̈́25%
̈́30%
̈́35%
̈́30%
̈́30%
̈́35%
̈́40%
̈́40%
̈́45%
10
25
̈́15%
̈́20%
̈́25%
̈́30%
̈́25%
̈́25%
̈́30%
̈́35%
̈́35%
̈́40%
25
63
̈́10%
̈́15%
̈́20%
̈́25%
̈́20%
̈́20%
̈́25%
̈́30%
̈́30%
̈́35%
63
100
̈́15%
̈́15%
̈́20%
̈́20%
̈́25%
̈́25%
̈́30%
Reference torque
-0.5
TP = 0.05 ( tan ) ×
Fao×l ....................................................
(3.1)
Here
TP
: Reference torque ( kgf . cm)
l : Lead
: Lead angle
( kgf )
Fao : Preload
( cm )
3.3 Tolerances on Various Areas of PMI Ballscrew
5
A-A'
4
6
2
B-B'
B-B'
2
2d 0
A-A'
2d 0
2d 0
2d 0
1
1
B-B'
B-B'
A'
A
2d 0
2d 0
3
B-B'
A
1
A-A'
A'
B'
B-B''
Those on above are samples of accuracy of tolerance on various areas of PMI Ball Screw.
: Perpendicularity Ъ:Radial runout
˂˂: Parallel
A
: Reference
Accuracy on various areas of PMI Ballscrew has to measure items:
1. Radial run-out of the circumference of the screw shaft supported portion in respect to the B-B' line.
2. Perpendicularity of the screw shaft supported portion end face to the B-B' line.
3. Radial run-out of the nut circumference in respect to the A-A' line.
4. Perpendicularity of the flange mounting surface to the A-A' line.
5. Parallelism between the nut circumference to the A-A' line.
6. Overall radial run-out to the A-A' line.
Note: The mounting surface of the Ball Screw is finished to the accuracy specified in JIS B1192-1997.
8
DESIGN of SCREW SHAFT
4.1 Production Limit Length of Screw Shaft
Production limit length of precision ground Ballscrew:
When screw shaft O.D. is 10 mm , Limit length of Ballscrew is 400 mm.
When screw shaft O.D. is 80 mm , Limit length of Ballscrew is 6000 mm.
Note: Please contact with our sales people in case a very high dm . n value is required.
Production limit length of rolled Ballscrew:
When screw shaft O.D. is 14 mm , Limit length of Ballscrew is 1000 mm.
When screw shaft O.D. is 50 mm , Limit length of Ballscrew is 3000 mm.
Note: Please contact with our sales people in case a special type is required.
9
4.2 Method for Mounting
The permissible axial load and permissible rotational speed vary with the screw-shaft mounting method used,
so the mounting method should be determined in accordance with the operating conditions.
Diagrams 4.1 through 4.3 illustrate a typical method for mounting a screw shaft.
Permissible rotational speed
Fixed
Fixed
Permissible axial load
Fig.4.1 Mount method : fixed-fixed
Permissible rotational speed
Fixed
Supported
Permissible axial load
Fig.4.2 Mount method : fixed-supported
Permissible rotational speed
Fixed
Free
Permissible axial load
Fig.4.3 Mount method : fixed-free
10
4.3 Permissible Axial Load
(1) Buckling load
The Ballscrew to be used should not buckle
under the maximum compressive load applied in
its axial direction. The buckling load can be
calculated by using equation (4.1):
NEI
L2
dr4
L2
(kgf )
(4.1)
Here:
: Safety factor ( =0.5)
: Young's modulus (E=2.1×104kgf / mm2)
(2) Permissible tensile-compressive load of the screw
shaft
Where the axial load is exerted on the
Ballscrew, the screw shaft to be used should be
determined in consideration of the permissible
tensile-compressive load that can exert yielding
stress on the screw shaft.
The permissible tensile-compressive load can
be calculated using equation (4.2).
: Minimum geometrical moment of inertia of the
dr 4 /64 mm 4 )
: Screw shaft thread minor diameter (mm)
L : Distance between mounting positions (mm)
screw shaft cross section (I=
m , N : Coefficient depending on the mounting method
supported-supported
m=5.1 (N=1)
fixed-supported
m=10.2 (N=2)
fixed-fixed
m=20.3 (N=4)
fixed-free
m=1.3 (N=1/4)
(4.2)
Here:
P: Permissible tensile-compressive load (kgf )
: Permissible tensile-compressive stress (kgf/ mm 2)
dr: Screw-shaft thread minor diameter (mm)
4.4 Permissible Rotational Speed
(1) Critical rotation speed:
When the rotation speed of driving motor
coincides with the natural frequency of feed
system (mainly the ballscrew), the resonance of
vibration shall be triggered. This rotation speed is
then called critical rotation speed. It shall make
bad quality machining, since there is wave shape
surface on the workpiece. It may also cause
damage of machine. Hence it is very important to
prevent the resonance of vibration from
happening. We choose 80% of critical rotation
speed as allowable speed. It is shown as formula
(4.3).
It may be required to have additional supports
in between the ends bearing supports to make the
natural frequency of Ballscrew to be higher and
hence to raise the allowable rotation speed.
11
EIg
n=
=f
dr
L2
107 (rpm)
(4.3)
Here:
n : Permissible rational speed (rpm)
: Safety factor ( =0.8)
: Young's modulus (E=2.1×104 kgf / mm2)
: Minimum geometrical moment of inertia of the screwshaft cross section (I= dr 4 /64 mm 4 )
: Screw-shaft thread minor diameter (mm)
L : Distance between mounting positions (mm)
g : Gravitation acceleration ( g=9.8×103 mm/s 2)
: Specific gravity ( =7.8×10 -6 kgf/mm 3)
: Coefficient depending on the mounting method
supported-supported
fixed-supported
fixed-fixed
fixed-free
f=9.7
f=15.1
f=21.9
f=3.4
(2) dm . n Value of Ballscrew:
dm is the PCD (pitch circle diameter) of screw
shaft, and n is the maximum rotation speed. The
dm.n value relates and affects the noise,
temperature raise, working life, balls circulation of
the ballscrew. In general cases, the dm.n value is
limited as follows: (See Note one)
Precision ground: dm . nЉ70000
Rolled
: dm . nЉ50000
Note one: These dm . n values are for reference only.
In fact, the dm.n value shall be decided
by the ways of end supporting and the
distance between them.
Note two: Please contact with our sales people in
case a very high dm . n value is required.
With better manufacturing technology currently,
the dm.n value is no longer limited as above. It is
even higher than 100,000. (See Note two)
4.5 Notes on Screw shaft design
(1) Through end thread:
For the Ballscrews with internal ball circulation
Ballnut, it is required to have at least one end with
complete thread to the end of Ballscrew for Ballnut
assembly to screw shaft. If it is impossible for
through end thread, it is required to have at least
one end with complete tread and the journal area is
with diameter to be 0.2mm smaller than the
diameter of thread root area.
(2) Machine design for the area of Ballnut and
ends area of Ballscrew:
It is very important to check if there is enough
space for assembly of Ballscrew onto the machine
during machine design. In some cases, there is not
enough space for assembly and the Ballnut has to
be disassembled from the screw shaft for easier
work. It may cause problems, such as the balls
falling out from Ballnut, worse accuracy of
squareness and roundout of Ballnut, change of
preload and damage to external ball circulating
tubes. In some more serious cases, the ballscrew
may be damaged and not to be used. Please
contact with our people if said above disassembling
is required.
(3) Not effective hardened area:
The threads on screw shaft are hardened by
induction hardening. It shall cause about 15mm at
both ends of thread area are not hard enough. It is
required to pay attention during machine design for
the effective thread length of travel.
(4) Extra support unit for long ballscrew:
For a long ballscrew, the bending due to self
weight might happen. It may cause radial direction
load to ballscrew. The radial direction vibration
during rotation might also be more serious. To
prevent these problems from happening, it may be
required to have extra supports for ballscrew in
between the existing supports at both ends. There
are two types of supports; one is movable to move
along the Ballnut. The other one is fixed type; it is
located in a fixed position. The Table must be
designed not to hit with this support during moving.
12
DESIGN of BALLNUT
5.1 Selecting the Type of Nut
(1) Type:
Selecting the type of Nut, please consider the
accuracy; dimension (The length of Nut; internal
diameter; external diameter), preload and the date
of delivery.
(2) Circulation:
a. External ball circulation
Advantages:
Lower noise due to longer ball circulation paths
Offers smoother ball running.
Offers better solution and quality for long lead
or large diameter ballscrews.
(3) Effective turns:
Selecting effective turns have to consider motion;
life and rigidity. Refer to the Table 5.1.
(4) Flange:
PMI have three standard type (A type, B type and
C type) Please make selection by area space for
nut installation. PMI can also make special flange
as per customers' requests.
(5) Oil hole:
Standard nuts have oil hole. Please dimension in
the diagram to manufacture.
b. Internal ball circulation
Advantages:
Good for limited space of machine.
Better structure for small lead or small diameter
ballscrews.
Table5.1 The character of effective turns
Character
External ball circulation
Motion
1.5 circuit x2 row, 1.5 circuit x3 row, 2.5 circuit x1 row
1 circuit x3 row, 1 circuit x4 row
Rigidity
2.5 circuit x2 row, 2.5 circuit x3 row
1 circuit x6 row
5.2 Calculating the Axial Load
5.2.1 Horizontal reciprocating moving mechanism
Fa: Axial load
Motion direction
W2
Sliding resistance
W1
Fig.5.1 Horizontal reciprocating moving mechanism
13
Internal ball circulation
For reciprocal operation to move work horizontally
(back and forth) in an conveyance system, the axial
load (Fa) can be gotten using the following equations:
Fa1=Ӵ×mg+ f + ma .............( 5.1)
Constant speed (leftward) Fa2=Ӵ×mg+ f ..................... ( 5.2)
Deceleration (leftward)
Fa3=Ӵ×mg+ f - ma ..............( 5.3)
Acceleration (rightward)
Fa4=-Ӵ×mg- f - ma .............( 5.4)
Constant speed (rightward) Fa5=-Ӵ×mg- f .....................( 5.5)
Fa6=-Ӵ×mg- f +ma ..............( 5.6)
Deceleration (rightward)
Acceleration (leftward)
Here:
a : Acceleration
V max
a=
t
V max : Rapid feed speed
t : time
m : Total weight
( table weight + work piece weight )
: Sliding surface friction coefficient
f : Non-load resistance
5.2.2 Vertical reciprocating moving mechanism
V max : Rapid feed speed
t : time
Deceleration (upward)
Acceleration (downward)
Constant speed (downward)
w
Sliding resistance
Here:
a : Acceleration
V max
a=
t
Constant speed (upward)
Fa: Axial load
Deceleration (downward)
Fa1=mg +Ӵ×mg+ f + ma ........( 5.7)
Fa2=mg +Ӵ×mg+ f ................( 5.8)
Fa3=mg +Ӵ×mg+ f - ma .........( 5.9)
Fa4=mg -Ӵ×mg- f - ma ..........( 5.10)
Fa5=mg -Ӵ×mg- f ..................( 5.11)
Fa6=mg -Ӵ×mg- f +ma ..........( 5.12)
Acceleration (upward)
Motion direction
For reciprocal operation to move work vertically (up
and down) in an conveyance system, the axial load (Fa)
can be gotten using the following equations:
m : Total weight
( table weight + work piece weight )
: Sliding surface friction coefficient
f : Non-load resistance
Fig.5.2 Vertical reciprocating moving mechanism
5.3 Notes on Ball Nut Design
Abnormal load: (torsional load or radial load)
When Ballscrew takes only axial load, the best performance of it shall be found; the balls on the groove
in between the Ballnut and screw shaft shall evenly take the load and rotate smoothly. In case there is
torsional load or radial load on Ballnut, this kind load shall be taken unevenly by some balls only. It shall
badly affect Ballscrew performance and even shorten ballscrew life. It is recommended to pay more
attention to the mechanism design and Ballscrew assembly.
14
RIGIDITY
6.1 Axial Rigidity
"Lost Motion" shall happen due to weakness of rigidity of screw shaft and mating components of it. In
order to get good positioning accuracy, it is necessary to consider axial and torsional rigidity of screw
shaft and mating components of it.
6.1.1 Axial rigidity of the feed-screw system
Let the axial rigidity of a feed-screw system be
K. Then, the elastic displacement in the axial
direction can be obtained using equation (6.1):
Fa ..........................................................
=
(6.1)
KT
1
1
1
1
1 .........................
=
+
+
+
(6.2)
KT
KS
KN
KB
KH
Here
: Feed-screw system elastic displacement in the axial direction ( m)
Fa: Axial load ( kgf )
K T : Axial rigidity of the feed-screw system (kgf/ m)
K S: Axial rigidity of the screw shaft (kgf/ m)
K N : Axial rigidity of the Nut (kgf/ m)
K B: Axial rigidity of the support bearing (kgf/ m)
K H : Rigidity of the Nut Bracket and support bearing bracket (kgf/ m)
(1) Axial rigidity of Screw shaft: K S
The axial rigidity of a screw shaft varies
depending on the shaft mounting method.
E
-3 ...........................................
KS = A×
(6.3)
x ×10
a. For fixed-supported
Here
K S : Axial rigidity of Screw shaft (kgf/ m)
cross-sectional area
A : Screw shaft
(A= dr 2/4 mm 2 )
E : Young's modulus (E=2.1×10 4 kgf/mm 2 )
x : Distance between mounting positions (mm)
b. For fixed-fixed
A×EL
KS =
×10-3 ...........................................(6.4)
x(L-x)
Here
K S : Axial rigidity of Screw shaft (kgf/ m)
L : Distance between mounting positions (mm)
Note: Which x=L/2, KS becomes the minimum and the elastic
displacement in the axial direction the maximum.
15
(2) Axial rigidity of Nut: K N
a. Non-preload type
Computation of the elastic displacement can be
using equation (6.1):
1/3
Q2
C
=
(
)........................(6.5)
Dw
Here
: A constant (reference: CЍ2.4)
: Contact angle of ball and grooved
: Ball diameter (mm)
: Load of each balls (Q=Fa/Z . sin kgf )
: Number of balls
: A coefficient of accuracy and inter conformation
Dimension tables include theoretical axial
rigidity values when the axial load with a
magnitude of 30% of the basic dynamic load
rating (Ca) is exerted on the Nut. These
values, don't consider the rigidity of the Nut
mounting brackets. Therefore, as a general
rule, take 80% of the values given in the table.
When the axial load with a magnitude
other than 30% of the basic dynamic load
rating (Ca) is exerted on the Nut, rigidity value
can be calculated using equation (6.6).
1/3
Fa
................................(6.6)
KN = 0.8×K
0.3Ca
Here
K : Rigidity value given in the dimension table
(kgf/ m)
Fa : Axial load (kgf )
Ca : Basic dynamic load rating (kgf )
b. Preloaded type
(3) Axial rigidity of support bearing: KB
Dimension tables include theoretical axial
rigidity values when the axial load with a
magnitude of 10% of the basic dynamic load rating
(Ca) is exerted on the Nut. These values, don't
consider the rigidity of the Nut mounting brackets.
Therefore, as a general rule, take 80% of the
values given in the table.
When the axial load with a magnitude other
than 10% of the basic dynamic load rating (Ca) is
exerted on the Nut, rigidity value can be calculated
using equation (6.6).
KN = 0.8 × K
Fao
×Ca
The axial rigidity of the support bearings for
the Ball Screw varies by bearing type.
A typical calculation for determining the axial
rigidity of an angular ball bearing can be made
using equation (6.8).
KB =
3Fao ...............................................
(6.7)
ao
Here
ao : Displacement in the axial direction.
1/3
ao =
.....................................(6.7)
2
Fao
Q= .
Z
Here
K : Rigidity value given in the dimension table
(kgf/ m)
Fao: Preload
: A coefficient of rigidity
Q2
Dw
1/3
....................................(6.8)
: Initial contact angle of the support bearing
Da : Ball diameter of the support bearing
Q : Load of each balls
Z : Number of balls
(4) Axial rigidity of nut bracket and support bearing
bracket : KH
Take this into consideration in the design of
your system. Setting the rigidity as high as
possible.
6.1.2 Torsional rigidity of the feed-screw system
The factors of positions error caused by twisting are:
1. Torsional deformation of screw shaft.
2. Torsional deformation of coupling.
3. Torsional deformation of motor.
But above deformations are too small in general machine (non-high speed machine),
they are then ignored.
16
6.1.3 Ball Screw's preload and effect
In order to get high positioning accuracy, there are two ways to reach it. One is commonly known as to
clear axial play to zero. The other one is to increase Ballscrew rigidity to reduce elastic deformation while
taking axial load. Both two ways are done by preloading.
(1) Methods of preloading
a. Double-nut method:
b. Single-nut method:
A spacer inserted between two nuts exerts
a preload. There are two ways for it.
One is illustrated in Fig.6.1. That is to use a
spacer with thickness complies with required
magnitude of preload. The spacer makes the
gap between Nut A and B to be bigger, hence
to produce a tension force on Nut A and B. It is
called "extensive preload".
As that illustrated on Fig. 6.3, using
oversize balls onto the space between Ballnut
and screw to get required preload. The balls
shall make four-point contact with grooves of
Ballnut and screw.
Lead
Lead
Nut
Direction of tension
Nut A
Direction of tension
Nut B
Spacer
Screw
Screw
Fig.6.3 Four-point contact preload
Fig.6.1 Extensive preload
Illustrated in Fig.6.2, is using a thinner
spacer. The thickness complies with required
magnitude of preload. The spacer is smaller
than the gap between Nut A and B,
compressing Nut A and B on opposite direction
to preload Ball Screws. It's called "compressive
preload".
Direction of compression
Nut A
Direction of compression
Spacer
There is another way for single nut Ball
Screw preloading. That is to shift a very little
distance, which complies with required
magnitude of preload, on one lead of Ballnut
as that illustrated on Fig. 6.4. to preload Ball
Screw.
Direction of tension
Lead
Direction of tension
Lead + offset
Lead
Nut
Nut B
Nut
Screw
Screw
Fig.6.2 Compressive preload
17
Fig. 6.4 Lead offset preload
Nut A
(2) Relation between preload force and elastic deformation
Fig 6.5, Nuts A and B are assembled with
preloading spacer. The preload forces on Nut A and B
are Fao, but with reversed direction. The elastic
deformation on both Nuts are .
Spacer
Fao
Nut B
Fao
Then there is a external axial force Fa applied to
Nut A as shown on Fig 6.6. The deformation of Nut A
and B becomes:
Fa+Fp
The load in nut A and nut B are:
FA=Fao+Fa-Fa'=Fa+Fp
FB=Fao- Fa'=Fp
Fa
Fig.6.5 Double-nut positioning preload
Displacement of Nut B
Displacement of Nut A
Axial load Fa
It means Fa is offset with an amount Fa'
because of the deformation of Nut B decreases. As
a result, the elastic deformation of Nut A is
reduced. This effect shall be continued until the
deformation of Nut B becomes zero, that is, until
the elastic deformation
caused by the external
axial force equals
, and the preload force
applied to Nut B is completely released. The
formula related the external axial force and elastic
deformation is shown as below:
2/3
Fp
Fa
Fao
Fp
2/3
Displacement
2/3
F l = 2.8Fao Ѝ 3Fao
Nut A
Nut B
Fig.6.6 Positioning preload diagram
Shown on Fig 6.7, with the axial load to be
three times as the preload, the elastic
displacement for the non-preloaded ball Nut is two
times as that of the preloaded Nut.
Nonpreload
Elastic Displacement
Therefore, the preload amount of a ballscrew is
recommended to set as 1/3 of its axial load. Too
much preload for a Ballscrew shall cause
temperature raise and badly affect its life.
However, taking the life and efficiency into
consideration, the maximum preload amount of a
Ballscrew is commonly set to be 10% of its rated
basic dynamic load.
Parallel
Preload
0
Fao
FЍ3Fao
Axial load Fa
Fig.6.7 Elastic Displacement of the Ball Screw
18
6.2 Positioning Accuracy
6.2.1 Causes of error in positioning accuracy
Lead error and rigidity of feed system are common causes of feed accuracy error. Other causes like
thermal deformation and feed system assembly are also playing important roles in feed accuracy.
6.2.2 Selecting the lead accuracy
Refer to page 5, the Specified travel line should coincide with the nominal travel line. However, in order
to compensate either the elongation caused by the thermal expansion during machine operating or the
shortening of length due to external load, the specified travel may be set to be positive or negative to the
Nominal travel. Machine designer can show the value of Specified travel on the drawing for our
manufacturing, or, we can help to decide it based on our more than ten years experience.
There is another way to compensate thermal effect by "pretension" to Ballscrew. Generally, the
pretension force shall elongate the Ballscrew to be equivalent to the thermal expansion at about 2-3 .
6.2.3 Considering thermal displacement
If the screw-shaft temperature increases during
operation, the heat elongates the screw shaft, thereby
reducing the positioning accuracy. Expansion and
shrinkage of a screw shaft due to heat can be
calculated using equation (6.10).
......................................... (6.10)
Here
: Thermal displacement ( )
: Thermal-expansion coefficient (
: Screw-shaft temperature change (
: Ballscrew length (mm)
)
(2) Compulsory cooling:
Ballscrew with hollow cooling.
Lubrication liquid or cooling air can be used to
cool down external surface of Ballscrew.
)
That is to say, an increase in the screw shaft
temperature of 1 expands the shaft by 12
per
meter. The higher the Ballscrew speed, the greater
the heat generation. Thus, temperature increases
reduce positioning accuracy. Where high accuracy is
required, anti-temperature-elevation measures must
be provided as follows:
19
(1) To control temperature:
Selecting appropriate preload.
Selecting correct and appropriate lubricant.
Selecting larger lead for the Ballscrew and
decrease the rotation speed.
(3) To keep off effect upon temperature raise:
Set a negative cumulative lead target value for
the Ballscrew.
Warm up the machine to stable machine's
operating temperature.
Pretension by using on Ballscrew while
installing onto the machine.
LIFE
7.1 Life of the Ballscrew
Even though the Ballscrew has been used with correct manner, it shall naturally be worn out and can
no longer be used for a specified period. Its life is defined by the period from starting use to ending use
caused by nature fail.
a. Fatigue life - Time period for surface flaking off happened either on balls or on thread grooves.
b. Accuracy life - Time period for serious loosing of accuracy caused by wearing happened on thread
groove surface, hence to make Ballscrew can no longer be used.
7.2 Fatigue Life
The basic dynamic rate load (Ca) of the Ballscrew is used to calculate its fatigue life
when it is operated under a load.
7.2.1 Basic dynamic rate load Ca
The basic dynamic rate load (Ca) is the revolution of 106 that 90% of identical
Ballscrew units in a group, when operated independently of one another under
the same conditions, can achieve without developing flaking.
7.2.2 Fatigue life
(1) Calculating life:
There are three ways to show fatigue life:
a. Total number of revolutions.
b. Total operating time.
c. Total travel.
Ca
L=
Fa fw
L
60 n
L×l
LS =
10 6
Lt =
3
10 .....................................(7.1)
6
.................................................(7.2)
..................................................(7.3)
Here
L : Fatigue life (total number of revolutions)
L t : Fatigue life (total operating time)
L s : Fatigue life (total travel)
Ca : Basic dynamic rate load
Fa : Axial load
n : Rotation speed
l : Lead
f w : Load factor (refer to Table 7.1)
Table7.1 Load factor f w
Vibration and impact
Light
Medium
Heavy
Velocity (V)
fw
V<15 (m/min)
1.0~1.2
15<V<60 (m/min) 1.2~1.5
V>60 (m/min)
1.5~3.0
Too long or too short fatigue life are not
suitable for Ballscrew selection. Using longer life
make the Ballscrew's dimensions too large. It's
an uneconomical result. Following table is a
reference of the Ballscrew's fatigue life.
Machine center ................................20,000 hours
Production machine .........................10,000 hours
Automatic controller ........ ................15,000 hours
Surveying instruments .....................15,000 hours
20
(2) Mean load:
When axial load changed constantly. It is required to calculate the mean axial load (Fm) and the mean
rotational speed (Nm) for fatigue life. Setting axial load (Fa) as Y-axis; rotational number (n.t) as X-axis.
Getting three kind curves or lines:
a. Gradational variation curve (Fig.7.1)
Mean load can be calculated by using _equation (7.4):
1
3
F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn
...........................(7.4)
Fm =
n1 .t1 + n2 .t2 + .....+ nn .tn
Mean rotational speed can be calculated by using equation (7.5):
Nm =
n1 .t1 + n2 .t2 + .....+ nn .tn
t1 + t2 + .....+ tn
Axial load
(kgf )
Rotation speed
(rpm)
F1
F2
n1
n2
t1
t2
Fn
nn
tn
............................................(7.5)
b. Similar straight line (Fig.7.2)
When mean load variation curve like similar straight line.
Mean rotational speed can be calculated using equation (7.6)
Fm=1/3(Fmin + Fmax) ....................................................... (7.6)
F
F
Fmax
F1
F2
Fm
Fm
Fn
Fmin
0
0
n 1t 1
n 2t 2
n nt n
Fig. 7.1 Gradational variation curve's load
Fig. 7.2 Similar straight line's load
c.Sine curve there are two cases (Fig.7.3)
1. When mean load variation curve shown as the diagram below.
Mean rotational speed can be calculated by using equation (7.7-1):
Fm= 0.65Fmax ................................................................ (7.7-1)
2. When mean load variation curve shown as the diagram below.
Mean rotational speed can be calculated by using equation (7.7-2):
Fm= 0.75Fmax ............................................................... (7.7-2)
F
F
Fmax
Fmax
Fm
Fm
0
0
Fig. 7.3-1 Variation like Sine curve's load (1)
21
Time Ratio
(%)
Fig. 7.3-2 Variation like Sine curve's load (2)
7.2.3 Affection of installation errors
When twist load or radial load is applied to Ballscrew, there shall be bad effect on ballscrew operation and
its life, It is required to make the feed system (Ballscrew, support bearings, Guideways) to be more rigid.
Hence to reduce. installation errors.
Ballscrews must be meticulously installed onto the Yoke (bracket) of machine to achieve precise pallelism
and squareness along moving direction of moving parts. It is very important to ensure minimum backlash
happens.
7.3 Permissible Load on Thread Grooves
Even though the Ballscrew is seldom operated and is operated under low velocity, it is required to make
the maximum load to be far smaller than its rated basic static load when making selection.
7.3.1 Basic static rate load Co
The basic static rate load is the static load with a non-varying direction and magnitude that makes the
sum of the permanent deformation of the rolling elements and raceway 0.0001 times the rolling element
diameter. With the Ball Screw, the basic static rate load is defined in relation to the axial load.
7.3.2 Permissible axial load
F max =Co / f s
Here
f s: Static safety factor
General industrial machine ...............................1.2~2
Machine tool .....................................................1.5~3
7.4 Material and Hardness
Material and Hardness of PMI Ballscrews refer to Table 7.2
Table7.2 Material and hardness of PMI Ballscrews
Denomination
Material
Heat treating
Hardness (RHC)
Precision ground
50CrMo4 QT
Induction hardening
58~62
Rolled
S55C
Induction hardening
58~62
Nut
SCM420H
Carburized hardening
58~62
22
7.5 Heat Treating Inspection Certificate
PRECISION MOTION INDUSTRIES, INC.
REPORT FOR HEAT
A TREATING
A
INSPECTION
SPECIMEN#
8040
CUSTOMER
P.O.NUMBER
PRODUCT
BALL SCREW
980405-1
MATERIAL
A
50CrMo4 QT
980405-2
HEAT
A TREAT
A
INDUCTION SURFACE
F
HARDENING
ITEM
INSPECTION DATA
HARDNESS
58-62 HRC AT SURFACE
F
CASE DEPTH
2.0mm BELOW THREAD ROOT
MICRO-
Martensite IN SURFACE
F
AREA
STRUCTURE
Sorbite IN CORE AREA
TEMPERING
AT 160 DEGREES CELCIUS
SPECIFICATIO
A
N
R25-5T4-FSI-300-395-C3
R25-5T4-FSI-500-600-C3
HEAT
A TREATED
A
ARE
(SEE SKETCH)
HARDNESS INSPECTED EVERY
R 0.5mm(SERIES 2)
HARDNESS INSPECTED EVERY
R 0.5mm(SERIES 1)
DEPTH
Series 1
Series 2
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
717
738
735
744
741
746
733
725
276
276
262
733
730
728
728
725
712
255
267
283
HV VS. HRC
HV
HRC
MICROSTRUCTURE
X500
Series 1
Series 2
800
700
600
500
400
300
200
100
0
0
1
2
3
4
5
6
7
8
9
10
11
DEPTH(EACH SCALE=0.5mm)
REMARKS
23
P
PASS
OR NOT
Q.C.CHIEF
12
13
14
15
800
780
760
740
720
700
690
680
670
660
650
640
630
620
610
600
590
580
570
560
540
520
500
480
460
440
420
400
380
360
340
320
300
280
260
240
INSPECTOR
64.0
63.3
62.5
61.8
61.0
60.1
59.7
59.2
58.8
58.3
57.8
57.3
56.8
56.3
55.7
55.2
54.7
54.1
53.6
53.0
51.7
50.5
49.1
47.7
46.1
44.5
42.7
40.8
38.8
36.6
34.4
32.2
29.8
27.1
24.0
20.3
7.6 Lubrication
Lithium base lubricants are used for Ballscrew lubrication.
Their viscosity are 30~40 cst (40 ) and ISO grades of 32~100.
Selecting:
1. Low temperature application: Using the lower viscosity lubricant.
2. High temperature, high load and low speed application: Using the higher viscosity lubricant.
Table7.3 Checking and supply interval of lubricant
Manner
checking interval
checking item
Supply or replacing interval
Automatic interval oil
supply
every week
To supply on each check, its volume depends on oil tank
Oil volume and purity capacity.
Lubricating grease
Within 2-3 months
after starting
operation of machine
Foreign matter
Normally supply once a year as per the result of check
Oil bath
everyday before
operation of machine
Oil surface
To supply as per wasting condition
7.7 Dustproof
Same as the rolling bearings, if there is the particles such as chips or water get into the ballscrew, the
wearing problem shall be deteriorated. In some serious cases, ballscrew shall then be damaged. In order to
prevent these problems from happening, there are wipers assembled at both ends of ball nut to scrape chips
and dust. There is also the "O-Ring" at the wipers to seal the lubrication oil from leaking from ball nut.
24
DRIVING TORQUE
8.1 Operating Torque of Ballscrew
(1) Normal Drive
Rotational motion converted to linear motion is
called normal drive. The torque required can be
obtained by using equation (8.1)
Ta =
Fa×l
................................................(8.1)
(2) Reverse operation:
Linear motion converted rotational motion is
called reverse operation motion. The torque
required can be obtained using equation (8.2):
Tb =
Here
Ta :Normal operation torque
Fa :Axial load
l :Lead
:Normal efficiency
Here
:Reverse operation torque
:Reverse efficiency
.............................................(8.2)
(3) Preload torque:
Friction torque due to preload on the Ballscrew,
The torque required can be obtained by using
equation (8.3):
Tp = k × Fa×l .............................................(8.3)
Here
Tp :Preload torque
Fao:Preload
k :Coefficient of preload torque
see equation (3.1)
8.2 Drive Torque of Motor
(1) Driving torque at constant speed:
The torque can counteract load and let Ballscrew to rotate uniformly is called driving torque for constant
speed. Driving torque = preloading torque + friction torque for axial load + friction torque for bearing.
T1 = k ×
Fao×l
+
Fa×l
+ TB
×
N1 .............................................
(8.4)
N2
Here
T1 :Driving torque at constant speed
Fao :Preload
Fa :Axial load
F :Cutting resistance
W
TB
N1
N2
:Guiding surface friction coefficient
:Total weight ( Working table weight + Working object weight )
:Friction torque for bearing
:Gear one
:Gear two
In general, driving torque of constant speed motion shall not over than 30% of rated torque of motor.
25
Cutting direction
Cutting resistance
W
Sliding resistance
Gear two
Gear one
Fig.8.1 Cutting machine diagram
(2) Driving torque at constant acceleration:
The torque required to counteract load and to let Ballscrew to rotate at constant acceleration is driving
torque at constant acceleration.
T2 = T1 + J . w ........................................................ (8.5)
2
N1
× [JG2+JSH+Jw+JC ] ..................... (8.6)
N2
J = JM + JG1 +
Jw =
W
g
2
l
........................................................ (8.7)
Here
T2 :Driving torque at constant acceleration
w :Motor's angular acceleration
J :Total inertial
JM :Inertial of motor
JG1 :Inertial of gear one
JG2 :Inertial of gear two
JSH
Jw
JC
W
l
g
:Inertial of screw shaft
:Inertial of moving parts (Ballscrew, Table)
:Inertial of Coupling
:Total weight
:Lead
:Gravitational acceleration
Cylindric inertia (Ballscrew, gear)
J =
4
32 g
× D ×L
GD 2 = 4 g × J =
8
(kgf .cm . sec )...............................(8.8)
2
D4 × L
(kgf . cm ) ..........................(8.9)
2
Here
:Specific gravity. (specific gravity of steel = 7.8x10-3 kgf / cm3)
:Diameter of cylinder
:Length of cylinder
26
SELECTING CORRECT TYPE of BALLSCREW
Operating conditions
Lead Accuracy P.5
1
Determine Lead accuracy
Determine axial play
Precision ground Ballscrew
( High precision)
Rolled Ballscrew
( Low precision)
Design of Screw Shaft P.9
Selecting shaft length
2
Selecting Lead
3
Selecting shaft diameter
4
Determine shaft
support method
Examine permissible
axial load
Examine permissible
rotation speed
Design of Ball Nut P.13
5
No
No
3
(
4
)
3
(
2
,
4
)
5
(
2
,
3
)
1
(
3
5
(
2
,
3
)
2
(
3
,
5
)
Selecting the Nut type
Calculate rigidity
in shaft axial direction
Calculate Nut rigidity
Calculate
support-bearing rigidity
Rigidity P.15
No
Examine the rigidity
Examine the
positioning accuracy
Life P.20
No
No
Calculate the service life
No
Driving Torque P.25
Examine the driving torque
Selecting motor
Examine the lubrication
and contamination protection
27
,
4
,
5
)
NOMENCLATURE OF PMI BALLSCREW
10.1 Nomenclature of External Circulation Ballscrew
4R50-10B2-2FSWC-1000-1500-0.018R
Rolled (Not marked for precision ground Ballscrews)
Accuracy grade
Overall length
Thread length
Refer to P.30 for this special code
W : External ball circulation (immersion type) P.48
V : External ball circulation (extrusive type) P.59
C : ACME thread
K : End cap type ball recirculation
S : Single nut
D : Double nut
O : Lead offset preloaded Ballnut
F : Ballnut with face to face flanges
F : Flange type
R : None flange type
S : Square Ballnut
D : Double flange Ballnut
Number of pairs of Nut on one screw shaft (Not
marked for single pair of Nut, no matter if it's single nut or double nut)
Quantity of circulation tubes
A: 1.5 circuits
Effective ball circuits
B: 2.5 circuits
C: 3.5 circuits
Lead
Screw nominal O.D.
Thread direction
Number of Thread (Not marked for regular single thread)
Type:FDWC
Type:DFWC
Type:FSWC
Type:FOWC
Type:RSWC
Type:SSWC
28
10.2 Nomenclature of Internal Circulation Ballscrew
4R32-10T4-2FSIC-1050-1500-0.018R
Rolled (Not marked for precision ground Ballscrews)
Accuracy grade
Overall length
Thread length
Refer to P.30 for this special code
Internal ball circulation P.70
S:
D:
O:
F:
F:
R:
S:
D:
Single nut
Double nut
Lead offset preloaded Ballnut
Ballnut with face to face flanges
Flange type
None flange type
Square Ballnut
Double flange Ballnut
Number of pairs of Nut on one screw shaft (Not
marked for single pair of Nut, no matter if it's single or double nut)
Quantity of circulation deflectors (or inserts)
T: Number of circuit = 1 circuit
Lead
Screw nominal O.D.
Thread direction
Number of Thread (Not marked for regular single thread)
Type:RDIC
Type:FDIC
Type:FSIC
Type:DFIC
29
Table10.1 Special code
C
Precision ground threads
E
E type ball circulation tube (PMI's patent)
W
Rolled threads
Q
Self lubrication
B
Retainer ( Located in between balls)
T
Ballnut rotation ( Instead of regular screw shaft rotation type Ballscrew )
D
E type tube + Self lubrication
F
E type tube + Retainer
J
E type tube + Self lubrication + Retainer
30
SAMPLE PROCESS of SELECTING the TYPE of BALLSCREW
11.1 Cutting Machine
Cutting direction
Cutting resistance
W1
+
Sliding resistance
W2
Fig.11.1 Cutting machine
1. DESIGN CONDITIONS:
Table weight:
Work piece weight:
Max. travel:
Rapid feed speed:
Life:
Sliding surface friction coefficient:
N max = 2000 rpm
̈́0.030/1000ʳmm (no load)
̈́0.005ʳmm (no load)
0.02 mm (no load)
1100 kgf
800 kgf
1000 mm
14 m/min
25000 h
0.1
Driving motor:
Positioning accuracy:
Repeatability accuracy:
Lost motion:
Axial load (kgf )
Feed speed
Time
Cutting resistance Sliding resistance
mm/min
ratio(%)
2. MECHANICAL CONDITIONS:
Calculation
data
Kinds of
operation
ʳ
ʳ
ʳʳ
Rapid feed
0
190
14000
30
Light cutting
500
190
600
55
Heavy cutting
950
190
120
15
ϨʳSliding resistance: Fa = (W1+W2)
=0.1x(1100+800)
=190 (kgf )
3. Items to be decided:
1. Screw nominal O.D., Lead, Type of Nut
2. Accuracy grade
3. Thermal displacement
4. Driving motor
31
1. Selecting Screw nominal O.D., Lead, Nut
(3) Selecting the type of nut
(1) Lead ( l )
The highest rotation speed of motor
V max
14000
lЊ
=
= 7 (mm)
N max
2000
In case stiffness is a major concern, lost motion becomes less
important, following specifications are to be selected:
External circulation Ballscrew
Type: FDWC
ϥ Number of circuit: Bx2 or Bx3
ϥ
ϥ
ϨLead have to be 7 mm or more.
( As per PMI catalog: select 8 and 10 mm for further analysis)
(kgf )
The value of Ca can be found as per this catalog:
(2) Basic dynamic rate load (Ca)
Calculation
data
Kinds of
operation
Axial load
Screw nominal
Feed speed
l=8
l = 10
N1 = 1750 N 1 = 1400
Time
O.D.
(mm)
Lead 8 (mm)
Lead 10 (mm)
Bx2
Bx2
Bx3
ratio (%)
32
3210
4660
t 1 = 30
36
3265
4930
5220
Bx3
Rapid feed
F1 = 190
Light cutting
F2 = 690
N2 = 75
N 2 = 60
t 2 = 55
40
3410
Heavy cutting
F3 = 1140
N3 = 15
N 3 = 12
t 3 = 15
45
3650
5175
5480
7760
50
3900
5520
5790
8200
Calculation of mean load and mean rotation
Mean load
Mean rotation
F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn
n1 .t1 + n2 .t2 + .....+ nn .tn
n1 .t1 + n2 .t2 + .....+ nn .tn
Nm =
t1 + t2 + .....+ tn
Fm =
Lead
l
(mm)
8
10
Mean load
Fm (kgf )
330
330
Mean rotation
Nm (rpm)
569
455
Calculation of basic dynamic rate load
Ca
Fa fw
L
Lt =
60N m
L =
_1
3
(4) Selecting screw shaft diameter
Ballscrew shaft diameter can be decided by critical rotation
speed of high speed feed.
Assume both of the supporting ends are fixed.
So the permissible rotational speed :
n=
EIg
=f
dr
L2
107
2
dr Њ n×L 10-7
f
L = Max. stroke + Nut length/2 + unthread area length
= 1000 + 100 + 200 = 1300 (mm)
Screw shaft supported method is fixed-fixedʳ
3
10 6
ʳf = 21.9
When l =8 (mm) .................... dr Њ13.5 (mm)
If the highest rotational speed reaches 1750 rpmʿ
screw shaft diameter at thread root area must be bigger
than 14 mm.
Ϩ So screw shaft diameter shall be ranged in between 20 and 50 mm.
As per design Conditions:
L t = 25000 (hours)
f w = 1.2
When l =8 (mm) ............ CaЊ3756 (kgf )
When l =10 (mm) .................... dr Њ10.8 (mm)
If the highest rotational speed reaches 1400 rpmʿ
screw shaft diameter at thread root area must be bigger
than 11 mm.
Ϩ So screw shaft diameter shall be ranged in between 16 and 50 mm.
If life > 25000 (hours) is needed,
Ca must be > 3756 (kgf )
When l =10 (mm) ............. CaЊ3487 (kgf )
If life > 25000 (hours) is needed,
Ca must be > 3487 (kgf )
(5) Considering rigidity
By initial conditions:
Lost motionΚ0.02 mm (no load)
Assume total displacement of components (including screw
shaft, ballnut and support bearing) of feed system is
0.016mm. Thus the unilateral elastic displacement of feed
system is
32
a. Axial rigidity of the screw shaft: KS
ϨWith the condition of
Elastic displacement of the screw shaft:
Make following selection by ignoring the bearing rigidity,
economical and safety consideration:
KS = A E L 10-3
x (L x )
40-FDWC-10B2
Type of BallscrewΚ
The smallest elastic displacement is in the middle of screw shaft.
Screw shaft diameterΚ40 ( mm)
From following diagramʳUsing xЈLS ˂2,
LeadΚ
Fa/2
Fa
10 ( mm)
Fa/2
(6) Length of Ballscrew:
L =Max. travel + Nut length + Unthreaded area length
(including journal ends length)
= 1000 + 180 + 100
= 1280
Ls/2
(mm)
Ls=1300
KS =
Ѝ1300 ( mm)
Ls/2
(7) Preliminary check:
a. Fatigue life
2
dr E
10-3
LS
Lt =
LS = Fa = Fa 2LS 103
KS
dr E
Ca
Fm fw
3
4700
=
330 1.2
HereʳFa is sliding resistance of 190 (kgf )
The results are in the table 11.2.
1
60n
6
10
3
10
6
1
60 455
Ѝ61000 (hours) >25000 (hours)
b. Axial rigidity of the nut: Kn
b. Permissible rotational speed
Elastic displacement of the nut:
Setting the preload to be 1/3 of maximum axial load.
n = f dr2 107
L
= 4540 (rpm)
Fao = Fmax 3 = 1140 3 =380 (kgf )
1/ 3
Kn = 0.8 K
Critical speed of screw shaft is 4540 (rpm). It is much
bigger than the maximum rotational speed of design.
So the Ballscrew selected is safe.
Fao
Ca
= 0.1, then
Ln = Fa
Kn
The results are in the table 11.2.
Table11.2
ʳʳ
Nut model no.
33
Screw
dr
Ca
K
32-FDWC-10B2
27.05
4660
36-FDWC-10B2
31.05
40-FDWC-10B2
Nut
Total
Ks
Ls
Kn
Ln
L
125
37.1
5.1
93.0
2.0
7.1
4930
138
48.9
3.9
101.2
1.9
5.8
35.05
5220
151
62.3
3.0
108.7
1.7
4.7
45-FDWC-10B2
38.05
5480
167
73.5
2.6
118.3
1.6
4.2
50-FDWC-10B2
42.05
5790
182
89.7
2.1
126.5
1.5
3.6
(2) Driving torque:
2. Selecting lead accuracy
Positioning accuracy required: ̈́0.030/1000 mm (Max. travel)
Refer to table 3.2, accumulated reference lead deviation (̈́E)
and total relative variation (e)
Accuracy grades: C4
3. Considering thermal displacement
According to the load capability of support bearings, make the
specified travel (T) compensation to be
a. Thermal displacement:
4L
0.047×2.1×104× ×27.052
=
4×1300
= 436 ( kgf )
Specified Travel (T) : -0.047/1300
(kgf ).
-0.047 (mm)
436
4. Selecting driving motor
<Required specifications>
1. The highest rotation speeds is 1500 rpm.
2. Time required to reach highest rotational speed is within 0.15 sec.
(1) Inertial
a. Screw shaft:
×D4×L
GDS2 =
=
8
380×1.0
2Ӹ
=18.1 (kgf .cm)
k = 0.3
Fao= Fmax/3
= 0.3×
= 190×1.0
2 ×0.9
= 33.6 (kgf .cm)
b. Pretension force:
8
-3
×7.8×10
a. Preloading torque
Fao×l
TP = k×
b. Friction torque
Rapid feed:
Fa×l
Ta =
= 12.0×10-6×3×1300
= 0.047 (mm)
Stretching:
works at constant speed, the torque caused by angular
acceleration is then neglected.
E = ̈́ 0.025/1250 ( mm)
e = 0.018 ( mm)
Pretension force:
In this case, the time sharing of machine working at
acceleration condition is limited. Assuming the machine
Light cutting:
690×1.0
Tb=
2 ×0.9
= 122.1 (kgf .cm)
Heavy cutting:
1140×1.0
Tc=
2 ×0.9
= 201.7 (kgf .cm)
The maximum required driving torque is preloading torque
plus friction torque of heavy cutting.
TL=Tp+Tc
= 219.8 (kgf .cm)
×44×130
= 101.9 ( kgf . cm2 )
b. Moving parts:
GDw2 = W
=
l
2
( 1100+800 )×
1.0
2
= 192.5 ( kgf .cm2 )
c. Coupling:
2
GDJ = 40 (kgf .cm2)
d. Total of inertial:
GDL2=GDS2+GDw2+GDJ2
= 334.4 (kgf .cm2)
34
(3) Selecting driving motor
5. Calculating the stress of the Ballscrew
Fmax
F
d r2/4
A
<Selecting conditions>
a. The highest rotation speed: N max Њ1500 (rpm )
b. Rated torque: T M ЇT L
c. Rotor inertia: J M ЊJ L б3
The specifications required for driving motor are then decided as
per above conditions.
Ϩ Motor specifications:
W M =3.6 (KW )
Output
Highest rotation speeds N max =1500 (rpm )
Rated torque
T M =22.6 (N . m )
Rotor inertia
2
GD M =750 (kgf . cm 2 )
is screw shaft thread root diameter)
dr=40+1.4-6.35=35.05 (mm)
Tmax=TL=219.8(kgf.cm)=21540 (N.mm)
(35.054)
=148167 (mm4)
J=
=
32
32
2
=
+ 2
= 11.9×106 N/m2
rotation speed
J ×
×f
T'M -TL 60
50CrMo4 steel tension strength is 1.1×108 N/m2 ˑ
Yield strength is 0.9×108 N/m2 ˑ
Here
J:
T' M
T L:
f:
( dr
= 2.91 N/mm2
= 2.91×10 6 N/m2
(4) Check required time period for reaching highest
t a=
= 1140×9.8×4
×35.052
= 11.56 N/mm2
= 1.16×10 7 N/m2
= T×r
J
21540×20
=
148167
Ϩ So the Ballscrew selected is safe.
Total inertia
= 2×T M
6. Calculating the buckling load of the screw shaft
Rotation Torque (rapid)
nEI
L2
Safe factor (choose 1.4 for this case)
( 274.3+750 )
× 2 ×1400 × 1.4
4 × 980 × ( 2 × 230 - (18.1+33.6 ) )
60
= 0.13 (sec) < 0.15 (sec)
ta =
dr4
L2
= 20.3×
35.054
×103
11002
=25300 (kgf )Ї Fmax (1140 kgf )
Ϩ So the Ballscrew selected is safe.
Ϩ Thus above motor specifications match design needs.
11.2 High Speed Porterage Apparatus (Horizontal application)
Motion direction
W2
Sliding resistance
W1
Fig.11.3 High speed porterage apparatus
35
1. DESIGN CONDITIONS:
W 1 = 50 kgf
Table weight:
W 2 = 25 kgf
Work piece weight:
S max = 1000 mm
Max. travel:
V max = 14 m/min
Rapid feed speed:
L t = 25000 hours
Life:
Guiding surface friction coefficient: = 0.01
N max = 3000 rpm
Driving motor:
̈́ 0.10/ at max. travel
Positioning Accuracy:
̈́ 0.01 mm
Repeatability Accuracy:
(2) Initial selection of screw shaft length:
L= Max. travel + Nut length + Unthreaded area length
(including journal ends length)
=1000 + 100 + 100
=1200 (mm)
(3) Selecting screw shaft diameter
Ballscrew shaft diameter can be decided by critical rotation
speed of high speed feed.
Assume the supporting ends are fixed-supported.
So the permissible rotational speed :
n=
2. MOTION CONDITIONS:
EIg
=f
dr
L2
107
2
dr Њ n×L 10-7
f
L
V (m/min)
x=1000mm
= Max. travel + Nut length/2 + Unthread area length
= 1000 + 50 + 100 = 1150 (mm)
Screw shaft support method is fixed-supported
ʳf = 15.1
50
dr Њ21.9 (mm)
2
3
1
If the high rotational speed is 2500 rpm,
Diameter at thread root area must be bigger than 22 mm.
t4=0.3
t5=0.9
t6=0.3
Ϩ So Screw-shaft diameter shall be ranged in between 25 and 36 mm.
0
t (sec)
t1=0.3
t2=0.9
t3=0.3
6
4
(4) Considering service life
First to analyze Fig.11.4 (V-t diagram)
The speed line is a straight one, hence it is a constant
acceleration, periodically reciprocating motion.
5
1.5(s)
Maximum velocity: V max = 50 (m/min) = 0.83 (m/s)
Acceleration time: t 1 = 0.3 (s)
1.75(s)
1.75(s)
t=3.5s / T
Fig.11.4 Porterage apparatus v-t diagram
3. Items to be decided
1. Screw nominal O.D., Lead
2. Accuracy grade
3. Type of nut
4. Driving motor
Deceleration time: t 3 = 0.3 (s)
a. Running distance during acceleration
x1 = V0 + V ×t =
2
b. Running distance during constant speed
x2 = V . t = 0.83×0.9=0.75 (m) = 750 (mm)
c. Running distance during deceleration
x3 =
V0 + V
×t =
2
d. The line segment
1. Selecting Screw nominal O.D., Lead
(1) Lead ʻ l )Κ
The highest rotation speed of motor
V max
50000
=
= 17 (mm)
3000
N max
ϨLead have to be 18 mm or more.
lЊ
0+0.83
×0.3= 0.125 (m) =125 (mm)
2
0.83+0
×0.3= 0.125 (m) =125 (mm)
2
1
Vmax
= 0.833 = 2.8 (m/s 2)
t1
0.3
F1 = (W1 + W2 )×g + (W1 +W2 )×a1
a1 =
= 0.01×(50+25)×9.8+(50+25)×2.8
= 217 (N)
N1 = nmax 2 = 2500 2 = 1250 (rpm)
( As per PMI catalog : select 8 and 10 mm for further analysis)
If lead is 20 mm, the highest rapid feed speed 50 m/min shall be
reached as long as the motor rotates at 2500 rpm.
36
e. The line segment 2
3. Selecting Ballscrew type
F2 = f = (W1+W2)×g
= 0.01× (50 + 25)× 9.8
= 7.35 (N )
N2 = 2500 (rpm)
Considering operation conditions, effective turns of A1 is
selected.
Selecting following type:
R25-20A1-FSWE-1000-1160-0.018
Screw-shaft support method is fixed-supported
f. The line segment 3
F3 = (W1+W2)×g + (W1+W2)×a3
= 0.01×(50+25)×9.8+(50+25)×(-2.8)
= -203 (N)
N3 = nmax 2 = 2500/2 = 1250 (rpm)
4. Selecting driving motor
< Required specifications>
Whence the relationship between the applied axial load, running
distance, time and mean rotation can be as follows:
2. Time required to reach highest rotational speed is within 0.30 sec.
(1) Inertial
a. Screw shaft:
Axial load
Running
distance
Time
217
125
0.3
1250
JS H =
2. Constant speed forward
7.35
750
0.9
2500
=
3. Deceleration forward
-203
125
0.3
1250
4. Acceleration returning
-217
125
0.3
1250
-7.35
750
0.9
2500
203
125
0.3
1250
Motion
1. Acceleration forward
5. Constant speed returning
6. Deceleration returning
Mean
rotation
1. The highest rotation speed of 3000 (rpm).
g. Calculation of mean load and mean rotation:
_1
3
F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn
Fm =
n1 .t1 + n2 .t2 + .....+ nn .tn
3
=
3
3
217 ×1250×0.6+7.35 ×2500×1.8+203 ×1250×0.6
1250×0.6+2500×1.8+1250×0.6
= 132.4 ( N )
Nm =
=
n1 .t1 + n2 .t2 + .....+ nn .tn
t1 + t2 + .....+ tn
1250×0.6+2500×1.8+1250×0.6
3.5
= 1714 (rpm)
h. Calculation of life
=
Ca
1
×
×10 6
60N
Fm × fw
m
1050×9.8
132.4×2.5
×
1
×106
60×1714
= 292000 (hours) Њ 25000 (hours)
ϨAbove conforms design requirements.
2. Selecting accuracy grade
Positioning accuracy of ̈́0.01/1000 mm(Max. travel)
From table 3.2
Accuracy grade: C5
E = ̈́0.040/1000
e = 0.027
37
Jw = W l
g 2
2
25+50
2
×
980
2
2
= 0.0078 (kgf . cm . sec 2)
c. Coupling:
J C = 0.0005 (kgf . cm . sec 2 )
d. Total of Inertial:
JL = Jsh + Jw + JC
= 0.012 (kgf . cm . sec 2 )
(2) Driving torque
a. During constant speed:
F ×l
T1 = 2
= 7.35×2
2×0.9
2 ×
= 2.6ʳЍ3.00 (N . cm)
b. During acceleration
3
Lt =
4
×2.54×120
32×980
= 0.0037 (kgf . cm . sec 2 )
b. Moving parts:
=
_1
3
×D ×L
32g
-3
×7.8×10
T2 = T 1 + J w
JM = 0.01 (kgf . cm . sec
2 n
60t1
2 ×2500
= 3+(0.009+0.01)×9.8×
60×0.3
= 166 (N . cm)
= T1 + (JL + JM )×
c. During deceleration:
T3 = T1 - J w
2 n
60t3
2 ×2500
= 3-(0.009+0.01)×9.8×
60×0.3
= -160 (N . cm)
= T1 - (JL + JM )×
2
)
(3) Selecting driving motor
<Selecting conditions>
1. The highest rotation speed: N max Њ3000 (rpm)
2. Rated torque -------T M ЇT L
3. Rotor inertia -------J M ЊJ L б3
The specifications required for driving motor are then decided as
per above conditions.
Ϩ Motor specifications
Output
W M =400 (W )
Highest rotation speeds
Rated torque
N max =3000 (rpm )
T M =1.27 (N . m )
Rotor inertia
J M =0.01 (kgf . cm . sec 2 )
(4) Effective torque:
Trms =
2
2
2
1660 ×12.5
24827
= 0.84 N/mm2
= 8.4×105 N/m2
=
Tmax=TL=166 (N.cm)=1660 (N.mm)
(22.4254)
=24827 (mm4)
J=
=
32
32
50CrMo4 steel tension strength is 1.1×108 N/m2 ˑ
166 ×06+3 ×1.8+160 ×0.6
3.5
= 95 (N . cm ) < 127 (N . cm )
ϨʳIt conforms to design requirements.
=
2
T
= ×
J
=
= 0.11×108 N/m2
T2 ×ta+T1 ×tb+T3 ×t
t
2
5. Calculating the stress of the Ballscrew
Fmax
= F=
A
d r 2/4
= 217×4 2
dr =25+0.3-3.175=22.425(mm)
×22.425
(dr is screw shaft thread minor diameter)
2
= 0.55 N/mm
= 5.5×105 N/m2
2
(5) T ime required to reach highest rotational speed.
ta = ' J × 2 n × f
TM -TL 60
Here:
J : Total inertia
T M ' = 2×T M
TL : Rotation Torque (rapid)
f : Safe factor (choose 1.4 for this case)
Yield strength is 0.9×108 N/m2 ˑ
Ϩ So the Ballscrew selected is safe.
6. Calculating the buckling load of the screw shaft
nEI
dr4
2
L
L2
4
22.425
= 10.2×
×103
11602
= 1917 (kgf ) Ї Fmax (22.14 kgf )
Ϩ So the Ballscrew selected is safe.
ta = 0.009+0.01 × 9.8 × 2 ×2500 ×1.4
2×127×3
60
= 0.27 (s )< 0.3 (s )
ϨIt conforms to design requirements.
38
w
Sliding resistance
W 1 = 300 kgf
W 2 = 50 kgf
S max = 1500 mm
V max = 15 m/min
L t = 20000 hours
= 0.01
N max = 1500 rpm
̈́0.8/1500 mm
̈́0.3 mm
FaΚ Axial load
1. DESIGN CONDITIONS:
Table weight:
Work piece weight:
Max. travel:
Rapid feed speed:
Life:
Guiding surface friction coefficient:
Driving motor:
Positioning accuracy:
Repeatability accuracy:
Motion direction
11.3 Vertical Porterage Apparatus
Fig.11.5 Vertical porterage apparatus
1. Selecting accuracy grades
2. MOTION CONDITIONS:
As per design condition: positioning accuracy required: 0.8/1500 mm.
± 0.8 = ± 0.16
1500
300
V(m/min)
s1=300mm
15
t1=0.2
t2=1.0
t3=0.2
1
s2=1500mm
4
Refer to table 3.2, accumulated reference lead deviation (̈́E)
and total relative variation (e)
6
5
3
t(sec)
t4=0.2
t5=5.8
t6=0.2
2
Accuracy grades C10
E=̈́0.12/300 mm.
Ϩ So the porterage apparatus can use Rolled Ballscrew.
2. Selecting screw nominal O.D., Lead
t1
t2
t3
t4
t5
t6
5(sec)
5(sec)X5 times
15(sec)
t=40s/ T
Fig.11.6 Porterage apparatus' v-t diagram
(1) Lead ( l )
The highest rotation speed of motor
V max
15000
=
= 10 (mm)
N max
1500
ϨLead have to be 10 mm or more.
lЊ
( As per PMI catalog : select 10 mm for further analysis)
3. Items to be decided:
1. Accuracy grade
2. Screw nominal O.D., Lead
3. Driving motor
(2) Permissible axial load
Setting up is positive.
a. Force during acceleration (downward) 1
Vmax
15000
2
2
=
t1
60×0.2 =1250 (mm/s ) =1.25 (m/s )
f = (W 1 +W 2 )×g= 0.01(300+500)×9.8 (Friction)
a1 =
= 35 (N )
F=maШF 1 =(W 1+W 2 )×g-f-(W 1 +W 2 )×a 1
= 2958 (N )
39
b. Force during constant speed (downward)
a=0ШF 2 =(W 1 +W 2 )×g-f
= 3395 (N)
2
c. Force during deceleration (downward) 3
F=maШF 3=(W 1 +W 2 )×g-f+(W 1 +W 2 )×a 3
= 3833 (N)
(6) Calculating of basic dynamic rate load:
Axial load
Motion
5
F 1 =2958
Constant speed (down)
F 2 =3395
N 2 =1500
t 2 =5.0
Deceleration (down)
F 3 =3833
N 3 =750
t 3 =1.0
Acceleration (up)
F 4 =3903
N 4 =750
t 4 =0.2
Constant speed (up)
F 5 =3465
N 5 =1500
t 5 =5.8
Deceleration (up)
F 6 =3028
N 6 =750
t 6 =0.2
F13.n1 .t1 + F23.n2 .t2 + .....+ Fn3.nn .tn
Fm =
n1 .t1 + n2 .t2 + .....+ nn .tn
Mean load
Mean rotation
P×L2
dr = m ×10-3
dr4
L2
1/4
3
Lt =
1/4
= 19 (mm)
Screw shaft diameter at thread root area must be bigger than 19 mm.
ϨSo screw shaft diameter shall be ranged in between 25 and 50 mm.
(4) The length of screw shaft
L= Max. travel + Nut length + Unthreaded area length
(including journal ends length)
=1500 + 100 + 200
=1800 (mm)
Slenderness ratio: 60 or less
L 1800
=
= 30 (mm)
60
60
ϨSo screw shaft diameter shall be ranged in between 32 and 50 mm.
(5) Permissible rotational speed:
Assume the supporting ends are fixed-supported
So the permissible rotational speed:
n=
= 3436 (N)
n1 .t1 + n2 .t2 + .....+ nn .tn
Nm =
t1 + t2 + .....+ tn
As per design condition:
Life required is 20000 hours, Let fw=1.2
3903×18002
=
×10-3
9.8×10.2
DЊ
_1
3
= 900 (rpm)
(3) Buckling load:
nEI
L2
t 1 =1.0
Acceleration (down)
f. Force during deceleration (upward) 6
F=maШF 6=(W 1 +W 2 )×g+f-(W 1 +W 2 )×a 6
= 3028 (N)
So Fa max =F 4 = 3903 (N)
Time
(sec)
(rpm)
N 1 =750
d. Force during acceleration (upward) 4
F=maШF 4=(W 1 +W 2 )×g-f+(W 1 +W 2 )×a 4
= 3903 (N)
e. Force during constant speed (upward)
a=0ШF 5 =(W 1 +W 2 )×g+f
= 3465 (N)
Mean rotation
(N)
EIg
=f
dr
L2
107
Ca
1
×
×106
60Nm
Fm × fw
Ca=(60Nm×Lt)1/3×Fm×fw×10-2
= 42303 (N)
= 4320 (kgf )
ϨIf the life required is > 20000 (hours),
Ca has to be > 4320 (kgf )
(7) Calculating basic static rate load:
Co=F max ×f s
Let fS = 2.0
= 7806 (N)
= 800 (kgf )
Co has to be > 800 (kgf )
Selection is made as follows:
ϨType of the Ballscrew: 40-FSWW-10B2
Screw shaft diameter: 40 (mm)
Lead:
10 (mm)
Basic dynamic rate load: 5200 (kgf )
2
dr Њ n×L 10-7 ( f=15.1, L=1800 )
f
Њ 30
If the highest rotational speed reaches 1500 rpm, screw shaft
thread diameter at thread root area must be bigger than 30 mm.
ϨSo screw shaft diameter shall be ranged in between 36 and 50 mm.
40
3. Selecting driving motor
<Required specifications>
1. The highest rotation speeds is 1500 rpm.
2. Time required to reach highest rotational speed is within 0.15 sec.
=
×D ×L
8
-3
×7.8×10
4
8
4. Total torque:
a. Acceleration (downward):
Tk1 = T1+T7 = 520+585 = 1105
b. Constant speed (downward):
Tt1 = T2
= 600 (N.cm)
c. Deceleration (downward):
Tg1 = T3+T7 = 680+585 = 1265
d. Acceleration (upward):
Tk2 = T4+T7 = 690+585 = 1275
e. Constant speed (upward):
Tt2 = T5
= 610 (N.cm)
f. Deceleration (upward):
Tg2 = T6+T7 = 540+585 = 1125
ϨTmax = Tk2 = 1275 (N.cm)
×44×180
= 141.1 ( kgf . cm2 )
b. Moving parts:
GDw2 = W
=
2 × 1500
(178 + 120 )
×
4 × 980
60 × 0.2
= 59.7 (kgf .cm) = 585 (N.cm)
=
(1) Inertial
a. Screw shaft:
GDS2 =
3. Torque required for acceleration:
T7 = J.w
GDM = 120 (kgf .cm2)
= (JL + JM )×
60t1
l
2
( 300+50 )×
1.0
2
= 35.5 ( kgf .cm2 )
c. Coupling:
2
GDJ =1.0 (kgf . cm 2 )
d. Total of Inertial:
2
2
2
2
GDL =GDS +GDw +GDJ
= 178 (kgf .cm2)
(2) Driving torque:
1. Friction torque
(N.cm)
(N.cm)
(N.cm)
(3) Selecting driving motor
<Selecting conditions>
a. The highest rotation speeds: NmaxЊ1500 ( rpm)
a. Acceleration (downward): 1
2950×1.0
T1 = Fa×l =
(N.cm)
= 520 (N . cm)
b. Rated torque -------TMЇTL
c. Rotor inertia-------JMЊJLб3
b. Constant speed (downward): 2
T2 = Fa×l = 3395×1.0 = 600 (N . cm)
The specifications required for driving motor are then
decided as per above conditions
ϨMotor specifications
Output
d. Acceleration (upward): 4
T4 = 690 (N.cm)
e. Constant speed (upward):
T5 = 610 (N.cm)
f. Deceleration (upward): 6
T6 = 540 (N.cm)
Rotor inertia
2. Preloading torque
TP = k × Fao×l
.
. . Fao = 0
... T = 0
P
41
WM=2000 (W )
c. Deceleration (downward): 3
Fa×l
3833×1.0
T3 =
= 680 (N . cm)
=
5
Highest rotation speeds Nmax=1500 ( rpm)
TM=13 (N . m)
Rated torque
GD M=120 ( kgf .cm2)
2
(4) Effective torque:
Trms =
Tk21 × t 1 + T t 21 × t 2 + T g21 × t 3 + T k22 × t 4 + T t 22 × t 5 + T g22 × t 6
t
2
2
2
2
2
2
= 1105 ×1.0 + 600 × 5 + 1265 ×1 + 1275 × 0.2 + 610 × 5.8 + 1125 × 0.2
20
= 606 (N.cm) < 1300 (N.cm)
ϨIt conforms to design requirements.
4. Calculating the stress of the Ballscrew
Fmax
F
d r2/4
A
(dr is screw shaft thread root diameter)
= 3903×9.8×4
dr=40+1.4-6.35=35.05 (mm)
×35.052
= 4.04
N/mm2
6
= 4.04×10 N/m2
= T×r
J
12750×20
=
148167
= 1.72
N/mm2
6
= 1.72×10 N/m2
Tmax=TL=1275 (N.cm)=12750 (N.mm)
(35.054)
=148167 (mm4)
J=
=
32
32
2
=
+ 2
= 4.39×10 6 N/m2
50CrMo4 steel tension strength is 1.1×10 8 N/m 2 >
Yield strength is 0.9×10 8 N/m 2 >
Ϩ So the Ballscrew selected is safe.
5. Calculating the buckling load of the screw shaft
nEI
L2
dr4
L2
= 10.2×
35.054
3
×10
18002
= 4751 (kgf )ЇFmax (398 kgf )
Ϩ So the Ballscrew selected is safe.
42
BALLSCREW with HOLLOW COOLING SYSTEM
PMI's design of hollow cooling system is especially good for high speed Ballscrews. It shall well dissipate
heat generated by friction between balls and grooves during Ballscrew running, and then to minimize thermal
deformation as to ensure positioning accuracy.
12.1 Introduction to Hollow Cooling System
The hollow cooling system is designed by PMI. (Fig.12.1) It uses a coolant pipe through the hollow
hole of Ballscrew. The hollow hole is through all of the Ballscrew, and one end is clogged with the oil seal
by PMI patent. The coolant is pumped into coolant pipe and flow to the end of coolant pipe. Coolant then
flow reversely along the hollow hole back into the coolant collector. It can cool down the Ballscrew. The
coolant is then sucked back to the cooling unit to drop coolant temperature and pumped again to the
coolant pipe to complete circulation.
coolant out
coolant pipe
coolant reverse
coolant in
Fig.12.1 Hollow cooling diagram
12.2 Patent
12.2.1 Hollow cooling system
1. Taiwan patent No.182845.
2. Features:
(i) Well and effectively control Ballscrew thermal
expansion.
(ii) Simple design and structure to save cost.
Fig.12.2 Hollow cooling system
43
12.2.2 Cooling entrance
1. Taiwan patent No.163206.
Fig.12.3 Cooling entrance
12.2.3 End sealing
12.2.5 Thermal control system test unit
Taiwan patent No.107485.
1. Patent pending
2. Features:
Easy for installing, disassembling and maintenance.
12.2.4 Coolant pipe support installation
1. Patent pending
2. Supported the coolant pipe. Let it don't touch
Ballscrew.
Fig.12.5 Thermal control system test unit
Fig 12.4 End sealing structure
12.3 Thermal control experiment
12.3.1 Test condition
Screw nominal O.D.
:
Lead:
Rotation speed:
Speed:
Load:
Slideways:
12.3.2 The results of experiment
40 mm
10 mm
1000 rpm
10 m/min
400 Kgf
Hardened ways
As per the results by experiment, PMI's design of
hollow cooling system proves an effective way for
controlling the thermal expansion on the Ballscrew.
Hence it is a very helpful design to high precision
machine tools.
35
30
No cooling
25
Hollow cooling
20
15
10
5
0
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100 105 110 115 120
(min)
Fig.12.6The rule of experiment
44
Precision Ground BallScrew
45
13.1 External Ball Circulation Nuts
Features:
Lower noise due to longer ball circulation paths.
Offers smoother ball running.
Offers better solution and quality for long lead or large diameter ballscrews.
Type:
There are two types of Ballnut of the external circulation Ball Screws. They are
"immersion type" of Fig.13.1. and "extrusive type" of Fig. 13.2. The "immersion
type" means the ball circulation tubes are inside the circular surface of Ballnut as
shown on specifications of this catalogue are of "immersion type".
In some cases, as per designs on customer's drawings, there are smaller
outer diameters ballnuts required. Then the ball circulation tubes shall extrude out
of Ballnut circular surface.
Fig.13.1 Immersion type
47
Fig.13.2 Extrusive type
FSWC
L
Q(oil hole)
T
Q(oil hole)
S
Y
X
Z
W
W
G
H
EFFECTIVE
SCREW SIZE
O.D.
10
BALL
LEAD DIA.
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
circuit xrow
(1x10 REV.)
Ca
Co
3
2.000
2.5x1
250
430
4
2.000
2.5x1
250
430
5
2.000
2.5x1
250
430
12
4
2.381
2.5x1
380
640
5
2.381
2.5x1
380
640
14
4
2.381
2.5x1
410
750
5
3.175
2.5x1
675
1145
4
2.381
2.5x1
420
800
15
16
NUT
FLANGE
FIT
BOLT
OIL HOLE
STIFFNESS
6
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
37
26
40
8
46
10
36
14
28
10 4.5
8
4.5
M6x1P
42
30
34
40
42
40
42
50
10
40
16
32
10 4.5
8
4.5
M6x1P
57
11
45
17
34
10 5.5 9.5 5.5
M6x1P
40
12
14
16
15
5
3.175
2.5x1
680
1210
3.175
2.5x1
680
1210
1.5x2
490
1010
4
2.381
2.5x1
430
850
3.5x1
560
1180
42
1.5x2
805
1525
45
20
2.5x1
690
1270
41
17
2.5x2
1250
2540
3.5x1
920
1780
1.5x2
805
1525
2.5x1
690
1270
3.5x1
920
1780
2.5x1
690
1270
1.5x2
530
1270
44
2.5x1
480
1060
40
2.5x2
820
2120
3.5x1
600
1480
43
10
26
1.5x2
965
2070
45
15
25
3.175
6
3.175
10
3.175
4
5
2.381
3.175
20
6
8
3.969
3.969
42
12
10
5
34
9
9
57
10
45
17
34
10 5.5 9.5 5.5
M6x1P
55
44
34
40
41
56
19
57
11
45
17
34
10 5.5 9.5 5.5
M6x1P
63
11
51
21
42
15 5.5 9.5 5.5
M6x1P
20
63
11
51
21
42
15 5.5 9.5 5.5
M6x1P
63
11
51
21
42
15 5.5 9.5 5.5
M6x1P
52
40
40
56
50
17
21
10
63.5 11
51
21
42
15
5.5 9.5 5.5
M6x1P
19
37
2.5x1
830
1730
1510
3460
3.5x1
1110
2420
1.5x2
1285
2545
2.5x1
1100
2120
3.5x1
1470
2970
56
15
30
1.5x2
1285
2545
61
15
26
2.5x1
1100
2120
3.5x1
1470
2970
56
67
11
55
26
52
46
48
49
54
62
15
5.5 9.5 5.5
M6x1P
15
56
48
10
19
22
2.5x2
44
42
33
24
52
44
16
22
46
40
16
16
75
11
13
59
61
27
27
54
54
10 5.5 9.5 5.5
15 6.6 11 6.5
15
41
29
15
71
21
26
M6x1P
M6x1P
21
21
30
48
FSWC
L
Q(oil hole)
Q(oil hole)
T
Q(oil hole)
S
Y
X
Z
W
W
G
H
EFFECTIVE
SCREW SIZE
O.D.
LEAD
4
5
25
6
8
BALL
DIA.
2.381
3.175
3.969
4.762
10
4.762
12
3.969
5
6
3.175
3.969
28
8
10
49
4.762
4.762
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
NUT
Dg6
FLANGE
L
A
T
W
FIT
G
H
S
BOLT
X
Y
OIL HOLE
Z
STIFFNESS
Q
circuit xrow
Ca
Co
1.5x2
600
1630
2.5x1
510
1355
2.5x2
930
2710
3.5x1
680
1900
42
31
1.5x2
1065
2575
45
30
44
46
40
49
69
11
57
26
52
15 5.5 9.5 5.5
M6x1P
23
44
2.5x1
910
2150
2.5x2
1650
4300
3.5x1
1210
3010
46
35
31
50
41
27
56
1.5x2
1420
3215
56
2.5x1
1210
2680
49
2.5x2
2190
5360
3.5x1
1610
3750
1.5x2
1820
3840
2.5x1
1560
3200
3.5x1
2080
4480
1.5x2
1820
3840
2.5x1
1560
3200
3.5x1
2080
4480
2.5x1
1210
2680
53
62
73
76
11
11
61
64
28
29
56
58
15 5.5 9.5 5.5
15 5.5 9.5 5.5
M6x1P
M6x1P
56
61
13
71
32
64
15 6.6 11 6.5
M6x1P
60
26
31
85
15
71
32
64
15 6.6 11 6.5
M6x1P
76
11
64
32
64
15 5.5 9.5 5.5
M6x1P
75
53
50
37
71
65
26
31
85
66
58
48
35
61
58
25
26
37
26
1.5x2
1110
2960
46
2.5x1
950
2470
42
2.5x2
1720
4940
3.5x1
1270
3460
47
38
1.5x2
1480
3605
57
33
2.5x1
1270
3000
2.5x2
2300
6000
3.5x1
1690
4200
57
39
1.5x2
1935
4325
65
35
2.5x1
1650
3600
3.5x1
2200
5040
68
1.5x2
1935
4325
74
2.5x1
1650
3600
3.5x1
2200
5040
55
55
60
60
56
50
63
63
67
77
33
83
83
93
12
12
15
69
69
76
31
31
36
62
62
72
15 6.6 11 6.5
15 6.6 11 6.5
15
9
14
8.5
M8x1P
M8x1P
M8x1P
27
53
28
54
29
40
35
93
15
76
36
72
15
9
14 8.5
M8x1P
29
40
FSWC
L
Q(oil hole)
T
Q(oil hole)
S
Y
X
Z
W
W
G
H
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
4
5
6
2.381
3.175
3.969
32
8
10
12
5
6
4.762
6.35
6.35
3.175
3.969
36
10
12
6.35
6.35
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
81
12
67
32
64
15 6.6 11 6.5 M6x1P
Ca
Co
2.5x1
565
1750
2.5x2
1020
3500
1.5x2
1180
3410
2.5x1
1010
2840
2.5x2
1830
5680
2.5x3
2590
8520
72
3.5x1
1350
3980
47
42
1.5x2
1560
4135
57
37
2.5x1
1330
3450
2.5x2
2410
6900
3.5x1
1770
4830
57
43
1.5x2
2010
5010
64
38
2.5x1
1720
4180
2.5x2
3120
8360
3.5x1
2300
5850
68
44
1.5x2
3000
6530
78
40
2.5x1
2570
5440
68
2.5x2
4660
10880
3.5x1
3430
7620
78
46
40
54
40
50
47
62
66
74
57
45
63
63
80
97
53
36
43
58
27
31
85
12
71
32
64
15 6.6 11 6.5 M8x1P
59
87
88
98
12
15
108 15
75
82
90
34
38
41
68
76
82
15 6.6 11 6.5 M8x1P
15
15
9
9
14 8.5 M8x1P
14 8.5 M8x1P
31
60
32
62
34
65
1.5x2
3000
6530
88
2.5x1
2570
5440
77
2.5x2
4660
10880
3.5x1
3430
7620
91
46
1.5x2
1240
3850
50
40
2.5x2
1920
6420
2.5x3
2720
9630
3.5x1
1410
4490
50
46
2.5x2
2600
7900
66
67
2.5x3
3680
11850
74
65
65
110
60
75
84
1.5x2
3180
7410
81
2.5x1
2720
6180
71
2.5x2
4930
12360
3.5x1
3630
8650
2.5x1
2720
6180
2.5x2
4930
12360
3.5x1
3630
8650
75
103
108 18
98
98
15
15
90
82
82
41
38
38
82
76
76
15
15
15
9
9
9
14 8.5 M8x1P
14 8.5 M8x1P
14 8.5 M8x1P
118 18
98
45
90
15
11 17.5 11 M8x1P
65
96
98
37
71
51
77
110 118 18
91
65
44
81
75
34
37
98
45
90
15
11 17.5 11 M8x1P
71
51
50
FSWC
L
Q(oil hole)
Q(oil hole)
T
Q(oil hole)
S
Y
X
Z
W
W
G
H
EFFECTIVE
SCREW SIZE
O.D.
LEAD
5
6
40
8
10
12
10
BALL
DIA.
3.175
3.969
4.762
6.35
6.35
6.35
45
12
51
7.144
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
NUT
Dg6
FLANGE
L
A
T
W
FIT
G
H
S
BOLT
X
Y
OIL HOLE STIFFNESS
Z
Q
circuit xrow
Ca
Co
1.5x2
1280
4275
2.5x1
1090
3560
2.5x2
1980
7120
2.5x3
2800
10680
75
103
3.5x1
1450
4980
50
50
1.5x2
1750
5300
60
45
2.5x1
1500
4420
53
37
2.5x2
2720
8840
2.5x3
3850
13260
84
107
3.5x1
2000
6190
60
52
46
50
43
48
67
70
36
60 101 15
66 104 15
83
86
39
40
78
80
15
15
9
9
14 8.5 M8x1P
14 8.5 PT1/8"
70
73
1.5x2
2220
6320
64
2.5x1
1900
5270
63
2.5x2
3450
10540
3.5x1
2540
7380
68
53
1.5x2
3370
8335
81
48
2.5x1
2880
6950
2.5x2
5220
13900
3.5x1
3840
9730
81
55
2.5x1
2880
6950
77
40
2.5x2
5220
13900
3.5x1
3840
9730
2.5x2
5480
15700
2.5x3
7760
23550
2.5x1
3550
8950
2.5x2
6440
17900
2.5x3
9120
26850
74
82
86
83
71
103
108 15
90
41
124 18 102 47
112 128 18 106 48
82
94
96
15
20
20
9
14
85 PT1/8"
11 17.5 11 PT1/8"
11 17.5 11 PT1/8"
91
88
101
131
132 18 110 50 100 20
112 132 18 110 50 100 20
148
74
40
78
78
55
11 17.5 11 PT1/8"
84
90
38
85
126
45
11 17.5 11 PT1/8"
87
128
FSWC
L
Q(oil hole)
T
Q(oil hole)
S
Y
X
Z
W
W
G
H
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
5
6
50
8
10
55
3.175
3.969
4.762
6.35
12
7.144
10
6.35
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
Ca
Co
1.5x2
1410
5305
1.5x3
2000
7960
2.5x2
2190
8840
3.5x1
1610
6190
50
60
1.5x2
1920
6600
60
53
2.5x2
2980
11000
2.5x3
4220
16500
3.5x1
2190
7700
60
62
55
50
80
84
60
60
67
85
52
114 15
96
43
118 15 100 45
86
90
15
15
9
9
14 8.5 PT1/8"
14 8.5 PT1/8"
76
84
87
128
1.5x2
2515
7810
68
2.5x2
3900
13020
86
2.5x3
5520
19530
3.5x1
2870
9110
1.5x2
3725
10450
81
57
2.5x1
3190
8710
71
48
2.5x2
5790
17420
2.5x3
8200
26130
131
137
3.5x1
4260
12190
81
67
2.5x1
3700
10050
2.5x2
6710
20100
2.5x2
6005
19540
2.5x3
8510
29310
87
109
128 18 107 49
98
20
11 17.5 11 PT1/8"
71
93
100
102
88
101
131
132
64
101 135 18 113 51 102 20
116
90
11 17.5 11 PT1/8" 94
146 22 122 55 110 20
14
20
13 PT1/8"
144 18 122 54 108 20
11 17.5 11 PT1/8"
49
95
101
148
52
FSWC
L
Q(oil hole)
Q(oil hole)
T
Q(oil hole)
S
Y
X
Z
W
W
G
H
EFFECTIVE
SCREW SIZE
O.D.
LEAD
10
63
80
53
12
BALL
DIA.
6.35
7.938
10
6.35
12
7.938
16
9.525
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
circuit xrow
Ca
Co
2.5x1
3510
11200
NUT
Dg6
FLANGE
L
A
T
W
FIT
G
H
S
BOLT
X
Y
OIL HOLE STIFFNESS
Z
Q
75
58
2.5x2
6370
22400
2.5x3
9020
33600
2.5x1
4770
13780
2.5x2
8650
27560
2.5x3
12250
41340
160
170
2.5x2
7130
28500
105
136
2.5x3
10100
42750
2.5x2
9710
35560
2.5x3
13760
53340
2.5x2
16450
59280
2.5x3
23300
88920
108 105 154 22 130 58 116 20
14
20
13 PT1/8" 112
135
165
88
60
115 124 161 22 137 61 122 20
130
136
143
134
124
160
160
208
14
20
13 PT1/8" 116
176 22 152 66 132 20
14
20
13 PT1/8"
182 22 158 68 136 20
14
20
13 PT1/8"
204 28 172 77 154 30
18
26 17.5 PT1/8"
201
141
207
159
234
FDWC
L
T S
Z
Q(oil hole)
X
Q(oil hole)
Y
Q(oil hole)
W
W
H
W
G
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
TURNS
16
5
6
4
5
2.381
3.175
3.175
2.381
3.175
20
6
8
3.969
3.969
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
1.5x2
4
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x10 REV.)
Ca
Co
490
1010
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
81
34
70
36
2.5x1
430
850
3.5x1
560
1180
78
57
11
45
17
34
15 5.5 9.5 5.5 M6x1P 30
42
38
1.5x2
805
1525
89
2.5x1
690
1270
77
2.5x2
1250
2540
3.5x1
920
1780
87
44
1.5x2
805
1525
100
38
40
40
105
80
63
63
11
11
51
51
20
20
40
40
15 5.5 9.5 5.5 M6x1P
32
64
2.5x1
690
1270
3.5x1
920
1780
100
15 5.5 9.5 5.5 M6x1P 32
44
43
1.5x2
530
1270
75
2.5x1
480
1060
67
2.5x2
820
2120
3.5x1
600
1480
75
50
1.5x2
965
2070
80
47
2.5x1
830
1730
2.5x2
1510
3460
40
44
89
76
105
63
67
11
11
51
55
24
26
48
52
15 5.5 9.5 5.5 M6x1P
15 5.5 9.5 5.5 M6x1P
36
71
39
79
3.5x1
1110
2420
80
55
1.5x2
1285
2545
97
48
2.5x1
1100
2120
3.5x1
1470
2970
93
56
1.5x2
1285
2545
108
48
2.5x1
1100
2120
3.5x1
1470
2970
48
48
82
71
102 75
110
11
13
59
61
27
28
54
56
15 5.5 9.5 5.5 M6x1P 39
15 6.6 11 6.5 M6x1P 39
56
54
FDWC
L
T S
Z
Q(oil hole)
X
Q(oil hole)
Y
Q(oil hole)
W
W
H
O.D.
LEAD
4
5
BALL
DIA.
2.381
3.175
25
6
8
10
5
6
3.969
4.762
4.762
3.175
3.969
28
8
10
55
G
EFFECTIVE
SCREW SIZE
4.762
4.762
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
NUT
Dg6
FLANGE
L
A
T
W
FIT
G
H
S
BOLT
X
Y
OIL HOLE STIFFNESS
Z
Q
circuit xrow
Ca
Co
1.5x2
600
1630
2.5x1
510
1355
2.5x2
930
2710
3.5x1
680
1900
75
61
1.5x2
1065
2575
86
57
2.5x1
910
2150
2.5x2
1650
4300
3.5x1
1210
3010
86
67
58
75
46
50
67
91
77
105
53
69
73
11
11
57
61
26
28
52
56
15 5.5 9.5 5.5 M6x1P
15 5.5 9.5 5.5 M6x1P
44
87
47
95
1.5x2
1420
3215
91
2.5x1
1210
2680
82
2.5x2
2190
5360
3.5x1
1610
3750
1.5x2
1820
3840
2.5x1
1560
3200
3.5x1
2080
4480
1.5x2
1820
3840
2.5x1
1560
3200
3.5x1
2080
4480
138
69
1.5x2
1110
2960
86
62
2.5x1
950
2470
2.5x2
1720
4940
3.5x1
1270
3460
86
73
64
53
116
76
11
64
29
58
15 5.5 9.5 5.5 M6x1P
93
95
59
85
13
71
32
64
15 6.6 11
6.5 M6x1P 49
111
69
134
58
55
78
1.5x2
1480
3605
98
2.5x1
1270
3000
89
2.5x2
2300
6000
3.5x1
1690
4200
1.5x2
1935
4325
2.5x1
1650
3600
3.5x1
2200
5040
1.5x2
1935
4325
2.5x1
1650
3600
3.5x1
2200
5040
55
59
117 85
106
117
83
83
15
12
12
71
69
69
32
31
31
64
62
62
15 6.6 11 6.5 M6x1P 49
15 6.6 11 6.5 M8x1P
15 6.6 11 6.5 M8x1P
94
97
15
76
36
72
15
9
53
106
117 93
14 8.5 M8x1P 54
76
134
138
104
65
93
113
60
52
74
113
60
96
68
111
58
48
65
15
76
36
72
15
9
14 8.5 M8x1P 54
76
FDWC
L
T S
Z
Q(oil hole)
X
Q(oil hole)
Y
Q(oil hole)
W
W
H
O.D.
BALL
LEAD DIA.
4
5
6
2.381
3.175
3.969
32
8
10
12
5
36
4.762
6.35
6.35
3.175
6
3.969
8
4.762
10
12
G
EFFECTIVE
SCREW SIZE
6.35
6.35
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
81
12
67
32
64
15 6.6 11 6.5 M6x1P
Ca
Co
2.5x1
565
1750
2.5x2
1020
3500
1.5x2
1180
3410
2.5x1
1010
2840
2.5x2
1830
5680
2.5x3
2590
8520
136
3.5x1
1350
3980
82
82
1.5x2
1560
4135
100
71
2.5x1
1330
3450
2.5x2
2410
6900
3.5x1
1770
4830
100
83
1.5x2
2010
5010
113
73
2.5x1
1720
4180
2.5x2
3120
8360
3.5x1
2300
5850
113
85
75
54
68
90
82
62
66
58
105 85
87
123
106
152
104
70
78
58
54
12
71
32
64
15 6.6 11 6.5 M8x1P 116
173
88
98
12
15
75
82
34
38
68
76
15 6.6 11 6.5 M8x1P
15
9
14 8.5 M8x1P
59
118
60
121
1.5x2
3000
6530
138
2.5x1
2570
5440
118
2.5x2
4660
10880
3.5x1
3430
7620
148
87
75
74
177
108 15
90
41
82
15
9
14 8.5 M8x1P
62
125
1.5x2
3000
6530
160
2.5x1
2570
5440
137
2.5x2
4660
10880
3.5x1
3430
7620
160
87
1.5x2
1240
3850
91
78
2.5x2
1920
6420
2.5x3
2720
9630
3.5x1
1410
2.5x2
2600
2.5x3
3680
11850
74
65
208
110
108 18
90
41
82
15
9
14 8.5 M8x1P
62
125
128
98
15
82
38
76
15
9
14 8.5 M8x1P
4490
90
7900
123 98
15
82
38
76
15
9
14 8.5 M8x1P 131
65
70
139
90
159
2.5x2
3265
9450
1.5x2
3180
7410
2.5x1
2720
6180
2.5x2
4930
12360
3.5x1
3630
8650
151
2.5x1
2720
6180
137
2.5x2
4930
12360
3.5x1
3630
8650
195
153 114 18
92
46
92
20
11 17.5 11 M8x1P 133
141
75
75
131
180
83
118 18
208 118 18
161
190
98
45
90
15
11 17.5 11 M8x1P
69
138
97
69
98
45
90
15
11 17.5 11 M8x1P 138
97
56
FDWC
L
T S
Z
Q(oil hole)
X
Q(oil hole)
Y
Q(oil hole)
W
W
H
O.D.
LEAD
5
6
40
8
10
12
6
8
BALL
DIA.
3.175
3.969
4.762
6.35
6.35
3.969
4.762
45
10
12
57
G
EFFECTIVE
SCREW SIZE
6.35
7.144
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
NUT
Dg6
FLANGE
L
A
T
W
FIT
G
H
S
BOLT
X
Y
OIL HOLE STIFFNESS
Z
Q
circuit xrow
Ca
Co
1.5x2
1280
4275
2.5x1
1090
3560
2.5x2
1980
7120
2.5x3
2800
10680
139
204
3.5x1
1450
4980
88
97
1.5x2
1750
5300
103
86
2.5x1
1500
4420
90
2.5x2
2720
8840
2.5x3
3850
13260
159
212
3.5x1
2000
6190
103
100
87
88
85
84
67
70
70
108 101 15
83
39
78
15
9
14 8.5 M8x1P 138
72
123 104 15
86
40
80
15
9
14 8.5 PT1/8" 143
1.5x2
2220
6320
124
2.5x1
1900
5270
108
2.5x2
3450
10540
3.5x1
2540
7380
124
102
1.5x2
3370
8335
141
90
2.5x1
2880
6950
2.5x2
5220
13900
3.5x1
3840
9730
151
106
2.5x1
2880
6950
137
75
74
82
86
152
131
180
108 15
90
41
124 18 102 47
94
20
14 8.5 PT1/8"
11 17.5 11 PT1/8"
73
145
75
151
5220
13900
3840
9730
161
106
2.5x2
2850
9870
123
157
2.5x3
4035
14800
2.5x2
3650
11780
2.5x3
5175
17670
2.5x2
5480
15700
2.5x3
7760
23550
2.5x1
3550
8950
2.5x2
6440
17900
85
88
90
158
206
180
243
140
210
114 15
96
48
96
20
9
2.5x2
159
96
15
3.5x1
80
208 128 18 106 48
82
15
127 18 105 52 104 20
132 18 110 50 100 20
132 18 110 50 100 20
11 17.5 11 PT1/8" 151
9
14 8.5 PT1/8"
11 17.5 11 PT1/8"
11 17.5 11 PT1/8"
11 17.5 11 PT1/8"
232
160
238
167
247
84
169
FDWC
L
T S
Z
Q(oil hole)
X
Q(oil hole)
Y
Q(oil hole)
W
W
H
O.D.
BALL
LEAD DIA.
5
6
50
8
10
55
63
3.969
4.762
6.35
7.144
10
6.35
6.35
12
7.144
16
7.938
10
80
3.175
12
10
12
16
G
EFFECTIVE
SCREW SIZE
6.35
7.938
9.525
W
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
Ca
Co
1.5x2
1410
5305
1.5x3
2000
7960
2.5x2
2190
8840
3.5x1
1610
6190
108
118
1.5x2
1920
6600
111
104
2.5x2
2980
11000
2.5x3
4220
16500
3.5x1
2190
7700
107
120
107
108
80
84
128
113
123
159
101
114 15
96
43
118 15 100 45
86
90
15
15
9
9
14 8.5 PT1/8"
14 8.5 PT1/8"
150
167
170
253
1.5x2
2515
7810
127
2.5x2
3900
13020
156
2.5x3
5520
19530
3.5x1
2870
9110
1.5x2
3725
10450
151
110
2.5x1
3190
8710
132
91
2.5x2
5790
17420
2.5x3
8200
26130
243
271
3.5x1
4260
12190
151
128
2.5x1
3700
10050
2.5x2
6710
20100
2.5x2
6005
19540
2.5x3
8510
29310
2.5x1
3510
11200
2.5x2
6370
22400
2.5x3
9020
33600
2.5x1
4090
12910
2.5x2
7420
25820
2.5x1
4760
13820
2.5x2
8630
27640
2.5x2
7130
28500
2.5x3
10100
42750
2.5x2
9710
35560
2.5x3
13760
53340
2.5x2
16450
59280
2.5x3
23300
88920
87
208
128 18 107 49
98
20
11 17.5 11 PT1/8"
127
93
100
102
210
181
243
11 17.5 11 PT1/8" 182
146 18 122 55 110 20
14
20
13 PT1/8"
144 18 122 54 108 20
11 17.5 11 PT1/8"
136
14
20
122
130
136
143
214
188
284
189
249
220
292
290
386
183
197
291
13 PT1/8" 220
249
144
92
111
108 189 154 22 130 58 116 20
115
260
124
180 135 18 113 51 102 20
140
176
326
161 22 137 61 122 20
14
20
178 28 150 69 138 30
18
26 17.5 PT1/8"
176 22 152 66 132 20
182 22 158 68 136 20
204 28 172 77 154 30
14
14
18
20
20
26
13 PT1/8"
13 PT1/8"
13 PT1/8"
13 PT1/8"
111
222
117
233
268
398
276
408
310
461
58
FSVC
L
S
V
Y
X
T
Z
W
U
EFFECTIVE
SCREW SIZE
O.D.
14
15
16
BALL
LEAD DIA.
BASIC RATE LOAD (Kgf )
Dynamic
Static
RETURN
NUT
FLANGE
(1x10 REV.)
circuit xrow
Ca
Co
Dg6
L
2.381
2.5x1
410
750
5
3.175
2.5x1
675
1145
4
2.381
2.5x1
420
800
5
3.175
2.5x1
680
1210
1.5x2
805
1525
2.5x1
690
1270
2.5x2
1250
2540
3.5x1
920
1780
50
5
3.175
3.175
20
6
6
3.969
3.969
25
10
5
4.762
3.175
28
6
3.969
FIT
BOLT
TUBE
OIL HOLE STIFFNESS
6
4
5
59
TURNS
UNIT: mm
25
28.5
40
42
40
42
A
T
W
S
45
10
35
10 5.5 9.5 5.5 19
48
10
38
X
Y
Z
U
10 5.5 9.5 5.5 17
V
Q
21 M6x1P
22 M6x1P
50
31
45
60
54
12
41
15 5.5 9.5 5.5 20
965
2070
50
15
830
1730
45
10
2.5x2
1510
3460
3.5x1
1110
2420
1.5x2
1285
2545
2.5x1
1100
2120
3.5x1
1470
2970
66
58
12
46
50
48
23 M6x1P
17
33
15
25
5.5 9.5 5.5 25
27 M6x1P
15
66
36
16
24
1.5x2
60
16
15
20
2.5x1
35
14
12
47
10 5.5 9.5 5.5 27
41
29
15
60
21
26
28 M6x1P 21
15
30
1.5x2
1420
3215
65
2.5x1
1210
2680
50
2.5x2
2190
5360
3.5x1
1610
3750
1.5x2
1820
3840
2.5x1
1560
3200
3.5x1
2080
4480
75
37
33
42
68
31
68
12
55
15 5.5 9.5 5.5 28
33 M6x1P
65
65
50
35
75
45
26
31
72
16
58
15 6.6 11 6.5 29
34 M6x1P 26
1.5x2
1110
2960
50
2.5x1
950
2470
45
2.5x2
1720
4940
3.5x1
1270
3460
50
38
33
44
60
1.5x2
1480
3605
55
2.5x1
1270
3000
50
2.5x2
2300
6000
3.5x1
1690
4200
44
68
55
70
70
12
12
56
56
15 6.6 11 6.5 28
15 6.6 11 6.5 28
34 M6x1P
36 M6x1P
27
53
28
54
39
FSVC
L
T
Z
S
V
Y
X
Q(oil hole)
W
U
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
5
6
3.175
3.969
32
8
10
6
4.762
6.35
3.969
36
10
6.35
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
RETURN
BOLT
TUBE
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Dg6
L
A
T
W
S
X
Y
Z
U
V
Q
Ca
Co
1.5x2
1180
3410
2.5x1
1010
2840
2.5x2
1830
5680
2.5x3
2590
8520
75
87
3.5x1
1350
3980
50
42
37
50
36
45
50
60
31
76
12
63
15 6.6 11 6.5 30
38 M6x1P 59
1.5x2
1560
4135
55
2.5x1
1330
3450
50
2.5x2
2410
6900
3.5x1
1770
4830
55
43
1.5x2
2010
5010
70
38
2.5x1
1720
4180
2.5x2
3120
8360
3.5x1
2300
5850
70
44
1.5x2
3000
6530
78
40
2.5x1
2570
5440
2.5x2
4660
10880
3.5x1
3430
7620
2.5x1
1430
3950
2.5x2
2600
7900
52
54
57
68
62
86
68
98
78
88
91
12
16
16
65
70
73
15 6.6 11 6.5 32
15
15
9
9
14 8.5 33
14 8.5 37
39 M6x1P
40 M6x1P
44 M8x1P
78
55
50
68
1.5x2
3180
7410
82
2.5x1
2720
6180
72
2.5x2
4930
12360
3.5x1
3630
8650
62
102
82
31
60
32
62
34
65
46
82
12
68
15 6.6 11 6.5 32
42 M6x1P
34
67
44
104 18
82
20
11 17.5 11
40
49 M6x1P
37
71
51
60
FSVC
L
S
V
Y
X
T
Z
Q(oil hole)
W
U
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
5
6
3.175
3.969
40
8
10
10
4.762
6.35
6.35
45
12
61
7.144
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
RETURN
NUT
FLANGE
FIT
BOLT
TUBE
OIL HOLE STIFFNESS
6
(1x10 REV.)
Dg6
L
A
T
W
S
X
Y
Z
U
V
Q
circuit xrow
Ca
Co
1.5x2
1280
4275
2.5x1
1090
3560
2.5x2
1980
7120
2.5x3
2800
10680
80
103
3.5x1
1450
4980
55
50
1.5x2
1750
5300
60
45
2.5x1
1500
4420
54
2.5x2
2720
8840
2.5x3
3850
13260
90
107
3.5x1
2000
6190
60
52
46
55
43
50
58
60
65
72
36
92
16
72
15
9
14 8.5 34
46 PT1/8" 70
37
94
16
76
15
9
14 8.5 36
47 PT1/8" 73
1.5x2
2220
6320
70
2.5x1
1900
5270
62
2.5x2
3450
10540
3.5x1
2540
7380
70
53
1.5x2
3370
8335
82
48
2.5x1
2880
6950
2.5x2
5220
13900
3.5x1
3840
9730
82
55
2.5x1
3020
7850
74
44
2.5x2
5480
15700
2.5x1
3550
8950
2.5x2
6440
17900
62
65
70
74
86
72
102
104
87
123
96
16
106 18
112 18
122 18
78
85
90
97
15
20
20
20
9
14
85
11 17.5 11
11 17.5 11
14 20.0 13
38
42
48
49
48 PT1/8"
52 PT1/8"
58 PT1/8"
60 PT1/8"
38
74
40
78
85
45
87
FSVC
L
T
Z
S
V
Y
X
Q(oil hole)
W
U
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
TURNS
3.175
6
3.969
8
4.762
50
10
12
55
10
10
63
80
12
6.35
7.144
6.35
6.35
7.938
16
9.525
10
6.35
12
7.938
16
9.525
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
RETURN
BOLT
TUBE
OIL HOLE STIFFNESS
6
circuit xrow
1.5x2
5
UNIT: mm
(1x10 REV.)
Ca
Co
1410
5305
1.5x3
2000
7960
3.5x1
1610
6190
2.5x2
2980
11000
2.5x3
4220
16500
2.5x2
3900
13020
2.5x3
5520
19530
1.5x2
3725
10450
2.5x1
3190
8710
2.5x2
5790
17420
Dg6
L
A
T
W
S
X
Y
Z
U
V
Q
63
70
52
73 104 16
86
15
9
14 8.5 40
56 PT1/8" 76
63
72
75
75
93
88
112
60
106 16
88
15
9
14 8.5 43
116 18
95
20
11 17.5 11
45
57 PT1/8"
59 PT1/8"
84
78
87
128
90
132
57
74
104 119 18
98
20
11 17.5 11
48
48
62 PT1/8" 94
2.5x3
8200
26130
134
137
3.5x1
4260
12190
84
67
2.5x1
3700
10050
2.5x2
6710
20100
2.5x2
6005
19540
2.5x3
8510
29310
2.5x1
3510
11200
2.5x2
6370
22400
2.5x3
9020
33600
2.5x1
4770
13780
2.5x2
8650
27560
2.5x3
12250
41340
2.5x1
8050
23100
2.5x2
14600
46200
2.5x2
7130
28500
2.5x3
10100
42750
2.5x2
9710
35560
2.5x3
13760
53340
2.5x2
16450
59280
2.5x3
23300
88920
82
84
87
123
100
130
128 22 105 20
125 18 103 20
14
20
13
11 17.5 11
52
54
64 PT1/8"
68 PT1/8"
77
90
107 132 20 110 20
11 17.5 11
53
165
60
124 142 22 117 20
14
20
13
57
76 PT1/8" 116
160
115
120
125
105
153
109
139
125
159
156
204
148
74 PT1/8" 112
88
100
95
101
58
137
94
49
170
150 22 123 20
14
20
13
62
78 PT1/8"
163 22 137 20
14
20
13
64
91 PT1/8"
169 22 143 25
14
20
13
67
93 PT1/8"
190 28 154 25
18
26 17.5 70
94 PT1/8"
68
131
136
201
141
207
159
234
62
FDVC
L
T
Z
S
V
Y
X
Q(oil
( hole))
U
EFFECTIVE
SCREW SIZE
O.D.
16
BALL
LEAD DIA.
5
5
3.175
3.175
20
6
5
25
6
10
5
3.969
3.175
3.969
4.762
3.175
28
6
63
3.969
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
RETURN
NUT
FLANGE
FIT
BOLT
TUBE
OIL HOLE STIFFNESS
6
(1x10 REV.)
Dg6
L
circuit xrow
Ca
Co
1.5x2
805
1525
2.5x1
690
1270
2.5x2
1250
2540
3.5x1
920
1780
90
1.5x2
965
2070
90
2.5x1
830
1730
2.5x2
1510
3460
3.5x1
1110
2420
1.5x2
1285
2545
2.5x1
1100
2120
3.5x1
1470
2970
104
1.5x2
1065
2575
90
2.5x1
910
2150
2.5x2
1650
4300
3.5x1
1210
3010
90
A
T
W
S
X
Y
Z
U
V
Q
90
31
35
80
110
80
110
38
54
12
41
40
80
110
32
64
44
58
12
46
10
15
47
5.5 9.5 5.5 25
27 M6x1P
15
104
92
23 M6x1P
15
90
36
15 5.5 9.5 5.5 20
12
47
10 5.5 9.5 5.5 27
79
55
15
60
39
48
28 M6x1P 39
15
56
57
64
12
52
15 5.5 9.5 5.5 26
31 M6x1P
47
95
67
1.5x2
1420
3215
104
58
2.5x1
1210
2680
92
48
2.5x2
2190
5360
3.5x1
1610
3750
1.5x2
1820
3840
2.5x1
1560
3200
3.5x1
2080
4480
136
69
62
42
128
68
12
55
15 5.5 9.5 5.5 28
33 M6x1P
104
68
136
45
96
59
122 72
16
58
15 6.6 11 6.5 29
34 M6x1P 49
1.5x2
1110
2960
90
2.5x1
950
2470
80
2.5x2
1720
4940
3.5x1
1270
3460
90
73
64
44
110
1.5x2
1480
3605
110
2.5x1
1270
3000
98
2.5x2
2300
6000
3.5x1
1690
4200
44
134
110
70
70
12
12
56
56
15 6.6 11 6.5 28
15 6.6 11 6.5 28
34 M6x1P
36 M6x1P
52
104
53
106
74
FDVC
L
S
V
Y
X
T
Z
Q(oil
( hole))
U
SCREW SIZE
O.D.
BALL
LEAD DIA.
5
6
3.175
3.969
32
8
10
6
4.762
6.35
3.969
36
10
6.35
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
RETURN
BOLT
TUBE
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Dg6
L
A
T
W
S
X
Y
Z
U
V
Q
Ca
Co
1.5x2
1180
3410
2.5x1
1010
2840
2.5x2
1830
5680
2.5x3
2590
8520
140
173
3.5x1
1350
3980
90
82
71
90
70
80
50
58
110 76
12
63
15 6.6 11 6.5 30
38 M6x1P 116
1.5x2
1560
4135
104
2.5x1
1330
3450
92
2.5x2
2410
6900
3.5x1
1770
4830
104
83
1.5x2
2010
5010
126
73
2.5x1
1720
4180
2.5x2
3120
8360
3.5x1
2300
5850
126
85
1.5x2
3000
6530
142
75
2.5x1
2570
5440
2.5x2
4660
10880
3.5x1
3430
7620
2.5x1
1430
3950
2.5x2
2600
7900
52
54
57
128
110
158
122
182
78
88
91
12
16
16
65
70
73
15 6.6 11 6.5 32
15
15
9
9
14 8.5 33
14 8.5 37
39 M6x1P
40 M6x1P
44 M8x1P
142
55
92
128
1.5x2
3180
7410
144
2.5x1
2720
6180
124
2.5x2
4930
12360
3.5x1
3630
8650
62
184
144
59
118
60
121
62
125
87
82
12
68
15 6.6 11 6.5 32
42 M6x1P
66
131
83
104 18
82
20
11 17.5 11
40
49 M6x1P
69
138
97
64
FDVC
L
T
Z
S
V
Y
X
Q(oil
( hole))
U
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
5
6
3.175
3.969
40
8
10
10
4.762
6.35
6.35
45
12
65
7.144
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
RETURN
NUT
FLANGE
FIT
BOLT
TUBE
OIL HOLE STIFFNESS
6
(1x10 REV.)
Dg6
L
A
T
W
S
X
Y
Z
U
V
Q
circuit xrow
Ca
Co
1.5x2
1280
4275
2.5x1
1090
3560
2.5x2
1980
7120
2.5x3
2800
10680
144
204
3.5x1
1450
4980
94
97
1.5x2
1750
5300
108
86
2.5x1
1500
4420
96
2.5x2
2720
8840
2.5x3
3850
13260
168
212
3.5x1
2000
6190
108
100
87
94
85
84
58
60
70
114 92
16
72
15
9
14 8.5 34
46 PT1/8"
138
72
132 94
16
76
15
9
14 8.5 36
47 PT1/8"
143
1.5x2
2220
6320
126
2.5x1
1900
5270
110
2.5x2
3450
10540
3.5x1
2540
7380
126
102
1.5x2
3370
8335
152
90
2.5x1
2880
6950
2.5x2
5220
13900
3.5x1
3840
9730
152
106
2.5x1
3020
7850
134
83
2.5x2
5480
15700
2.5x1
3550
8950
2.5x2
6440
17900
62
65
70
74
158
132
192
194
158
230
96
16
106 18
112 18
122 18
78
85
90
97
15
20
20
20
9
14
85
11 17.5 11
11 17.5 11
14 20.0 13
38
42
48
49
48 PT1/8"
52 PT1/8"
58 PT1/8"
60 PT1/8"
73
145
75
151
167
84
169
FDVC
L
S
V
Y
X
T
Z
Q(oil
( hole))
U
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
TURNS
3.175
6
3.969
8
4.762
50
10
12
55
10
10
63
80
12
6.35
7.144
6.35
6.35
7.938
16
9.525
10
6.35
12
7.938
16
9.525
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
RETURN
BOLT
TUBE
OIL HOLE STIFFNESS
6
circuit xrow
1.5x2
5
UNIT: mm
(1x10 REV.)
Ca
Co
1410
5305
1.5x3
2000
7960
3.5x1
1610
6190
2.5x2
2980
11000
2.5x3
4220
16500
Dg6
L
A
T
W
S
X
Y
Z
U
V
Q
107
70
101
127 104 16
86
15
9
14 8.5 40
56 PT1/8" 150
107
72
134
170
106 16
88
15
9
14 8.5 43
116 18
95
20
11 17.5 11
57 PT1/8"
170
253
2.5x2
3900
13020
2.5x3
5520
19530
1.5x2
3725
10450
2.5x1
3190
8710
2.5x2
5790
17420
2.5x3
8200
26130
254
271
3.5x1
4260
12190
154
128
2.5x1
3700
10050
2.5x2
6710
20100
2.5x2
6005
19540
2.5x3
8510
29310
2.5x1
3510
11200
2.5x2
6370
22400
2.5x3
9020
33600
2.5x1
4770
13780
2.5x2
8650
27560
2.5x3
12250
41340
2.5x1
8050
23100
2.5x2
14600
46200
2.5x2
7130
28500
2.5x3
10100
42750
2.5x2
9710
35560
2.5x3
13760
53340
2.5x2
16450
59280
2.5x3
23300
88920
75
160
118
208
45
59 PT1/8"
154
82
84
91
194 119 18
160
232
194
254
98
20
128 22 105 20
125 18 103 20
11 17.5 11
14
20
13
11 17.5 11
48
52
54
62 PT1/8" 182
64 PT1/8"
68 PT1/8"
136
90
196 132 20 110 20
11 17.5 11
53
113
14
20
13
57
76 PT1/8" 226
304
115
120
125
296
200
260
232
302
302
398
291
326
232 142 22 117 20
200
183
197
74 PT1/8" 220
160
100
92
111
256
94
260
110
134
78
176
336
150 22 123 20
14
20
13
62
78 PT1/8"
163 22 137 20
14
20
13
64
91 PT1/8"
169 22 143 25
14
20
13
67
93 PT1/8"
190 28 154 25
18
26 17.5 70
94 PT1/8"
127
254
268
398
276
408
310
461
66
FOWC
L
Q(oil hole)
Q(oil hole)
T S
Z
W
W
X
Y
Q(oil hole)
W
H
G
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
FLANGE
(1x10 REV.)
Dg6
2.5x1x(2)
3.5x1x(2)
2.5x1x(2)
3.175
3.5x1x(2)
6
3.969 2.5x1x(2)
1100
2120
48
67
71
8
3.969 2.5x1x(2)
1100
2120
48
78
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
3.175
2.5x2x(2)
2.5x1x(2)
3.969
2.5x2x(2)
510
930
910
1650
1210
2190
1355
2710
2150
4300
2680
5360
8
4.762 2.5x1x(2)
1560
3200
58
77
10
4.762 2.5x1x(2)
1560
3200
58
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
3.969
2.5x2x(2)
950
1720
1270
2300
2470
4940
3000
6000
4.762 1.5x1x(2)
1045
2120
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
2.5x2x(2)
1.5x1x(2)
2.5x1x(2)
1.5x1x(2)
2.5x1x(2)
1.5x1x(2)
2.5x1x(2)
565
1020
1010
1830
1330
2410
1110
1720
1660
2570
1660
2570
1750
3500
2840
5680
3450
6900
2510
4180
3260
5440
3260
5440
20
4
5
6
5
6
10
circuit xrow
2.381
2.381
3.175
4
2.381
5
3.175
6
3.969
8
4.762
10
6.35
12
6.35
32
67
NUT
FIT
BOLT
OIL HOLE STIFFNESS
6
Co
1060
1480
1730
2420
5
28
BASIC RATE LOAD(Kgf )
Dynamic
Static
Ca
450
600
830
1110
4
25
TURNS
40
44
46
50
53
55
55
60
54
58
62
66
74
74
L
A
T
W
G
H
51
21
42
55
26
52
11
59
27
54
15 5.5 9.5 5.5 M6x1P 37
75
13
61
27
54
15 6.6 11 6.5 M6x1P 37
69
11
57
26
52
73
11
61
28
56
76
11
64
29
58
85
13
71
32
64
15 6.6 11 6.5 M6x1P 54
100 85
15
71
32
64
15 6.6 11 6.5 M6x1P 54
12
69
31
62
12
69
31
62
15
76
36
72
15
81
12
67
32
64
15 6.6 11 6.5 M6x1P
85
12
71
32
64
15 6.6 11 6.5 M8x1P
88
12
75
34
68
15 6.6 11 6.5 M8x1P
100 15
82
38
76
15
9
14 8.5 M8x1P
108 15
90
41
82
15
9
14 8.5 M6x1P
108 18
90
41
82
15
9
14 8.5 M8x1P
50
63.5 11
60
56
67 11
65
50
74
55
85
62
98
56
83
86
63
83
100
74 93
50
76
57
87
63
99
64
80
78
97
88
110
S
X
Y
Z
Q
32
44
36
15 5.5 9.5 5.5 M6x1P
50
10 5.5 9.5 5.5 M6x1P
42
78
49
15 5.5 9.5 5.5 M6x1P
89
51
15 5.5 9.5 5.5 M6x1P
92
15 5.5 9.5 5.5 M6x1P
52
97
55
15 6.6 11 6.5 M8x1P
100
15 6.6 11 6.5 M8x1P
9
14 8.5 M8x1P 39
50
95
58
106
60
110
42
63
46
69
46
69
FOWC
L
Q(oil hole)
Q(oil hole)
T S
Z
W
W
H
X
Y
Q(oil hole)
W
G
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
36
BALL
LEAD DIA.
TURNS
BASIC RATE LOAD(Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
(1x10 REV.)
Co
3210
6420
3950
7900
3710
6180
3560
7120
4420
8840
5270
10540
4710
6950
9730
Dg6
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
2.5x2x(2)
1.5x1x(2)
2.5x1x(2)
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
2.5x2x(2)
1.5x1x(2)
2.5x1x(2)
3.5x1x(2)
Ca
1060
1920
1430
2600
1750
2720
1090
1980
1500
2720
1900
3450
1860
2880
3850
circuit xrow
60
90
66
102
81
103
60
90
66
102
83
131
81
103
121
A
T
W
G
H
S
X
Y
Z
Q
98
15
82
38
76
15
9
14 8.5 M8x1P
98
15
82
38
76
15
9
14 8.5 M8x1P
118 18
98
45
90
15
11 17.5 11 M8x1P
101 15
83
39
78
15
9
14 8.5 M8x1P
104 15
86
40
80
15
9
14 8.5 PT1/8"
108 15
90
41
82
15
9
14
124 18 102 47
94
20
11 17.5 11 PT1/8"
96
63
117
66
121
50
74
67
125
71
131
74
136
53
80
106
5
3.175
6
3.969
10
6.35
5
3.175
6
3.969
8
4.762
10
6.35
12
6.35 2.5x1x(2)
2880
6950
86
112 128 18 106 48
20
11 17.5 11 PT1/8" 80
10
6.35 2.5x1x(2)
3020
7850
88
101 132 18 110 50 100 20
11 17.5 11 PT1/8" 86
12
7.144 2.5x1x(2)
3550
8950
90
112 132 18 110 50 100 20
11 17.5 11 PT1/8" 89
5
3.175 2.5x1x(2)
1210
4420
80
60 114 15
43
86
15
9
14 8.5 PT1/8" 80
6
3.969 2.5x2x(2)
2980
11000
84
103 118 15 100 45
90
15
9
14 8.5 PT1/8" 155
8
4.762 2.5x2x(2)
2.5x1x(2)
6.35 2.5x2x(2)
3.5x1x(2)
3900
3190
5790
4260
13020
8710
17420
12190
87
134 129 18 107 49 98 20
101
161 135 18 113 51 102 20
121
7.144 2.5x1x(2)
3700
10050
100 116 146 22 122 55 110 20
2.5x1x(2)
2.5x2x(2)
2.5x1x(2)
6.35
2.5x2x(2)
3310
6005
3510
6370
9770
19540
11200
22400
101
144 18 122 54 108 20
161
105
108
154 22 130 58 116 20
165
7.938 2.5x1x(2)
4770
13780
115 124 161 22 137 61 122 20
40
65
L
65
75
67
70
74
82
85 PT1/8"
45
50
10
12
55
10
10
63
12
6.35
93
96
102
11 17.5 11 PT1/8" 161
93
11 17.5 11 PT1/8" 171
125
14
20
13 PT1/8" 96
100
183
109
13 PT1/8"
202
11 17.5 11 PT1/8"
14
20
14
20
13 PT1/8" 121
68
13.2 Internal Ball Circulation Nuts
Features:
The advantage of internal ball circulation nut is that the outer diameter is smaller than
that of external ball circulation nut. Hence it is suitable for the machine with limit space
for Ballscrew installation.
It is strictly required that there is at least one end of screw shaft with complete
threads. Also the rest area next to this complete thread must be with smaller diameter
than the nominal diameter of the screw shaft. Above are required for easy assembling
the ballnut onto the screw shaft.
Fig. 13.3 Internal ball circulation's side view
69
FSIC
L
60
60
6
60
60
60
Q(oil hole)
Q(oil hole)
G
H
Q(oil
( hole))
S
X
Y
60
T
Z
W
W
W
-0.2
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
SCREW SIZE
O.D.
BALL
LEAD DIA.
EFFECTIVE
(1x10 REV.)
TURNS
Ca
Co
NUT
Dg6
14
3
2.000
3
260
460
4
2.381
3
420
805
16
4
2.381
3
435
920
28
5
3.175
30
5
3.175
20
25
6
3.969
5
3.175
6
3.969
10
4.762
5
32
6
3.969
8
4.762
10
6.35
5
6
40
3.175
3.175
3.969
8
4.762
10
6.35
12
7.144
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
3
765
1240
3
860
1710
4
1100
2280
3
1080
2050
4
1380
2730
3
980
2300
4
1250
3070
3
1275
2740
4
1630
3650
26
34
34
40
40
A
T
W
G
H
S
X
Y
37
46
10
36
-
-
10 4.5
8
4.5 M6x1P 19
42
46
10
36
20
40
10 4.5
8
4.5 M6x1P 19
42
49
10
39
20
40
10 4.5
8
4.5 M6x1P 21
42
49
10
39
20
40
10 4.5
8
4.5 M6x1P 23
57
12
45
20
40
12 5.5 9.5 5.5 M6x1P
47
53
53
Q
22
28
22
12
45
20
40
12 5.5 9.5 5.5 M6x1P
63.5 12
51
22
44
15 5.5 9.5 5.5 M8x1P
63.5 12
51
22
44
15 5.5 9.5 5.5 M8x1P
15
55
26
52
15 6.6 11 6.5 M8x1P 27
53 73.5 12
60
30
60
15 6.6 11 6.5 M8x1P 42
61
47
53
53
61
26
34
27
35
1620
3205
1095
3060
4
1400
4080
6
1980
6120
62
62
3
1500
3750
53
33
1920
5000
2720
7500
3
1820
4230
4
2330
5640
3
2605
5310
4
3340
7080
4
1575
5290
6
2230
7940
4
2130
6410
6
3020
9620
4
2720
7620
6
3850
11430
3
3010
7100
4
3850
9470
3
4010
9250
4
5130
12330
69
29
3
4
80
57
Z
3
6
42
L
47
48
48
32
61 73.5 12
60
30
60
15 6.6 11 6.5 M8x1P 43
73
50
68
77
54
55
55
60
64
70
80
90
56
65
65
77
77
94
83
93
93
103
64
83
16
66
32
64
15 6.6 11 6.5 M8x1P
88
16
70
34
68
15
9
14 8.5 M8x1P
88.5 16
72
29
58
15
9
14 8.5 M8x1P
88.5 16
72
34
68
15
9
14 8.5 M8x1P
16
76
36
72
20
9
14 8.5 M8x1P
106 18
84
43
86
20
11 17.5 11 M8x1P
110 18
85
45
90
20
11 17.5 11 M8x1P
93
33
44
34
45
50
74
52
77
53
79
42
54
44
58
Stock
70
FSIC
L
Q(oil hole)
Q(oil hole)
G
H
Q(oil
( hole))
S
X
Y
T
Z
W
W
W
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
SCREW SIZE
O.D.
LEAD
BALL
DIA.
5
3.175
6
8
3.969
4.762
50
10
12
7.938
20
7.938
6
3.969
8
63
80
6.35
10
4.762
6.35
12
7.938
20
9.525
10
6.35
12
20
7.938
9.525
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
EFFECTIVE
(1x106 REV.)
TURNS
Ca
Co
4
1730
6760
6
2450
10140
4
2380
8250
6
3370
12380
4
3010
9610
6
4260
14420
3
3430
9300
4
4390
12400
6
6220
18600
114
97
3
4510
11150
99
51
4
5770
14870
3
4510
11150
4
2610
10550
6
3700
15830
4
3375
12200
6
4780
18300
4
5020
16450
6
7110
24680
4
6580
19430
6
9320
29150
3
8490
23610
4
5510
21200
6
7810
31800
4
7500
25700
6
10620
38550
3
9770
31700
4
12510
42270
Dg6
66
66
70
L
55
65
65
77
79
96
A
T
W
G
H
S
X
Y
98
16
82
36
72
20
9
14 8.5 PT1/8"
98
16
113 18
82
90
36
42
72
84
20
20
9
Z
Q
14 8.5 PT1/8"
11 17.5 11 PT1/8"
83
74
75
75
80
82
85
90
95
105
110
115
89
62
92
64
94
50
93 116 18
94
42
84
20
11 17.5 11 M8x1P 66
121 22
97
47
94
20
14
20
13 PT1/8"
146 121 28
97
47
94
20
14
20
13 PT1/8" 51
122 18 100 45
90
20
11 17.5 11 PT1/8"
111
67
80
80
68
75
110
77
124 18 102 46
92
20
11 17.5 11 PT1/8"
132 22 107 48
96
20
14
20
13 PT1/8"
136 22 112 52 104 20
14
20
13 PT1/8"
146 153 28 123 59 118 20
18
26 17.5 PT1/8" 74
14
20
96
98
118
111
136
98
118
111
136
146
168
151 22 127 57 114 20
156 22 132 59 118 20
173 28 143 66 132 20
14
18
20
13 PT1/8"
13 PT1/8"
26 17.5 PT1/8"
Stock
71
60
114
80
118
82
121
97
143
100
147
86
113
L
S
Q(oil hole)
G
H
Q(oil hole)
X
Y
T
Z
Q(oil hole)
FDIC
W
W
W
UNIT: mm
BASIC RATE LOAD (Kgf)
Dynamic
Static
SCREW SIZE
O.D.
16
BALL
LEAD DIA.
4
2.381
5
3.175
5
3.175
20
6
25
5
3.175
6
3.969
10
4.762
5
32
6
3.175
3.969
8
4.762
10
6.35
5
3.175
6
40
3.969
8
3.969
4.762
10
6.35
12
7.144
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
EFFECTIVE
(1x10 REV.)
TURNS
Ca
Co
Dg6
L
A
T
W
G
H
S
X
Y
3
435
920
30
66
49
10
39
20
40
10 4.5
8
4.5 M6x1P 33
30
80
49
10
39
20
40
10 4.5
8
4.5 M6x1P 37
57
12
45
20
40
12 5.5 9.5 5.5 M6x1P
6
3
765
1240
3
860
1710
4
1100
2280
3
1080
2050
4
1380
2730
3
980
2300
4
1250
3070
3
1275
2740
4
1630
3650
3
1620
3205
3
1095
3060
34
34
40
40
42
82
92
93
107
82
92
93
107
57
Z
Q
49
39
12
45
20
40
12 5.5 9.5 5.5 M6x1P
63.5 12
51
22
44
15 5.5 9.5 5.5 M8x1P
63.5 12
51
22
44
15 5.5 9.5 5.5 M8x1P
55
26
52
15 6.6 11 6.5 M8x1P 49
140 69
15
82
50
45
58
47
60
54
4
1400
4080
6
1980
6120
118
102
3
1500
3750
93
57
4
1920
5000
6
2720
7500
3
1820
4230
4
2330
5640
3
2605
5310
4
3340
7080
4
1575
5290
6
2230
7940
4
2130
6410
6
3020
9620
4
2720
7620
6
3850
11430
3
3010
7100
4
3850
9470
3
4010
9250
4
5130
12330
48
38
48
92 73.5 12
109 73.5 12
60
60
30
30
60
60
15 6.6 11 6.5 M8x1P 70
15 6.6 11 6.5 M8x1P 73
133
50
54
55
55
60
64
70
117
135
139
160
96
122
113
137
134
172
142
162
160
185
105
83
16
66
32
64
15 6.6 11 6.5 M8x1P
88.5 16
70
34
68
15
9
14 8.5 M8x1P
88.5 16
72
29
58
15
9
14 8.5 M8x1P
88
16
72
34
68
15
9
14 8.5 M8x1P
93
16
76
36
72
20
9
14 8.5 M8x1P
106 18
84
43
86
20
11 17.5 11 M8x1P
110 18
85
45
90
20
11 17.5 11 M8x1P
58
75
62
79
84
121
87
126
90
130
76
97
82
104
Stock
72
FDIC
L
S
Q(oil hole)
Q(oil hole)
G
H
Q(oil hole)
X
Y
T
Z
W
W
W
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
SCREW SIZE
O.D.
LEAD
BALL
DIA.
5
3.175
6
8
3.969
4.762
50
10
12
7.938
20
7.938
6
3.969
8
63
80
6.35
10
4.762
6.35
12
7.938
20
9.525
10
6.35
12
20
7.938
9.525
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
EFFECTIVE
(1x106 REV.)
TURNS
Ca
Co
4
1730
6760
6
2450
10140
4
2380
8250
6
3370
12380
4
3010
9610
6
4260
14420
3
3430
9300
4
4390
12400
6
6220
18600
205
165
3
4510
11150
171
94
4
5770
14870
3
4510
11150
4
2610
10550
6
3700
15830
4
3375
12200
6
4780
18300
4
5020
16450
6
7110
24680
4
6580
19430
6
9320
29150
3
8490
23610
4
5510
21200
6
7810
31800
4
7500
25700
6
10620
38550
3
9770
31700
4
12510
42270
Dg6
66
66
70
L
96
122
111
142
136
A
T
W
G
H
S
X
Y
98
16
82
36
72
20
9
14 8.5 PT1/8"
98
16
82
36
72
20
9
Z
Q
14 8.5 PT1/8"
75
75
80
82
85
90
95
105
110
115
152
109
90
42
84
20
11 17.5 11 PT1/8"
162 114 18
92
42
84
20
11 17.5 11 PT1/8" 115
157
90
121 22
97
47
94
20
14
20
13 PT1/8"
253 121 28
97
47
94
20
14
20
13 PT1/8" 94
122 18 100 45
90
20
11 17.5 11 PT1/8"
195
115
144
141
178
166
124 18 102 46
11 17.5 11 PT1/8"
125
182
130
187
137
14
20
13 PT1/8"
136 22 112 52 104 20
14
20
13 PT1/8"
253 153 28 123 59 118 20
18
26 17.5 PT1/8" 132
14
20
195
248
166
209
195
248
253
297
96
20
120
20
209
132 22 107 48
92
151 22 127 57 114 20
156 22 132 59 118 20
173 28 143 66 132 20
14
18
20
13 PT1/8"
13 PT1/8"
26 17.5 PT1/8"
Stock
73
146
105
113 18
174
143
74
101
198
143
204
164
236
171
246
152
195
L
T
FOIC
S
Q(oil hole)
Q(oil hole)
G
H
Q(oil hole)
X
Y
Z
W
W
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
SCREW SIZE
O.D.
20
25
32
40
BALL
LEAD DIA.
NUT
FLANGE
FIT
EFFECTIVE
(1x10 REV.)
TURNS
Ca
Co
Dg6
L
A
T
W
G
H
S
BOLT
OIL HOLE STIFFNESS
6
X
Y
Z
Q
5
3.175
3x(2)
860
1710
34
67
57
12
45
20
40
12 5.5 9.5 5.5 M6x1P 38
6
3.969
3x(2)
1080
2050
34
77
57
12
45
20
40
12 5.5 9.5 5.5 M6x1P 39
5
3.175
3x(2)
980
2300
40
67 63.5 12
51
22
44
15 5.5 9.5 5.5 M8x1P 45
6
3.969
3x(2)
1275
2740
40
77 63.5 12
51
22
44
15 5.5 9.5 5.5 M8x1P 47
10
4.762
2x(2)
1140
2140
42
88
15
55
26
52
15 6.6 11 6.5 M8x1P 35
5
3.175
73.5 12
60
30
60
15 6.6 11 6.5 M8x1P
6
3.969
8
4.762
10
6.35
5
3.175
6
3.969
8
4.762
10
6.35
3x(2)
1095
3060
4x(2)
1400
4080
3x(2)
1500
3750
4x(2)
1920
5000
3x(2)
1820
4230
4x(2)
2330
5640
3x(2)
2605
5310
4x(2)
1575
5290
6x(2)
2230
7940
4x(2)
2130
6410
6x(2)
3020
9620
4x(2)
2720
7620
3x(2)
3010
7100
4x(2)
3850
9470
48
48
50
54
55
55
60
64
67
77
77
90
95
69
73.5 12
60
30
60
15 6.6 11 6.5 M8x1P
54
70
57
73
58
83
16
66
32
64
15 6.6 11 6.5 M8x1P
120 88
16
70
34
68
15
9
14 8.5 M8x1P 62
88.5 16
72
29
58
15
9
14 8.5 M8x1P
112
80
101
93
75
84
121
87
88
16
72
34
68
15
9
14 8.5 M8x1P
116 93
16
76
36
72
20
9
14 8.5 M8x1P 90
106 18
84
43
86
20
11 17.5 11 PT1/8"
118
123
143
126
73
94
74
FOIC
L
T
S
Q(oil hole)
Q(oil hole)
G
H
Q(oil hole)
X
Y
Z
W
W
W
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
SCREW SIZE
O.D.
50
63
75
LEAD
BALL
DIA.
5
3.175
6
3.969
8
4.762
10
6.35
12
7.938
6
3.969
EFFECTIVE
(1x106 REV.)
TURNS
Ca
Co
4x(2)
1730
6760
6x(2)
2450
10140
4x(2)
2380
8250
6x(2)
3370
12380
4x(2)
3010
9610
3x(2)
3430
9300
4x(2)
4390
12400
3x(2)
4510
11150
4x(2)
2610
10550
6x(2)
3700
15830
NUT
Dg6
66
66
70
74
75
80
FLANGE
L
80
101
93
FIT
BOLT
OIL HOLE STIFFNESS
A
T
W
G
H
S
X
Y
98
16
82
36
72
20
9
14 8.5 PT1/8"
Q
144
103
82
36
72
20
9
119 113 18
90
42
84
20
11 17.5 11 PT1/8" 106
114 18
92
42
84
20
11 17.5 11 M8x1P
147 121 22
97
47
97
20
14
122 18 100 45
90
20
11 17.5 11 PT1/8"
123
143
96
121
14 8.5 PT1/8"
99
16
118
98
Z
20
150
87
112
13 PT1/8" 90
123
179
8
4.762
4x(2)
3375
12200
82
119 124 18 102 46
92
20
11 17.5 11 PT1/8" 127
10
6.35
4x(2)
5020
16450
85
147 132 22 107 48
96
20
14
20
12
7.938
3x(2)
6580
19430
90
147 136 22 112 52 104 20
18
26 17.5 PT1/8" 117
13 PT1/8" 134
R SIC
L
W h9
K
H
UNIT: mm
BASIC RATE LOAD (Kgf )
SCREW SIZE
BALL
TURNS
O.D.
LEAD
DIA.
EFFECTIVE
16
5
3.175
3
5
3.175
6
3.969
5
3.175
20
25
6
5
32
6
3.969
3.175
3.969
8
4.762
10
6.35
5
3.175
6
3.969
40
8
10
4.762
6.35
Dynamic
Static
NUT
KEYWAY
STIFFNESS
6
(1x10 REV.)
Ca
Co
765
1240
3
860
1710
4
1100
2280
3
1080
2050
4
1380
2730
3
980
2300
4
1250
3070
3
1275
2740
4
1630
3650
3
1095
3060
4
1400
4080
6
1980
6120
3
1500
3750
4
1920
5000
6
2720
7500
3
1820
4230
4
2330
5640
3
2605
5310
4
3340
7080
4
1575
5290
6
2230
7940
4
2130
6410
6
3020
9620
4
2720
7620
6
3850
11430
3
3010
7100
4
3850
9470
Dg6
L
K
W
H
30
40
20
3
1.8
20
3
1.8
20
25
4
2.5
20
4
2.5
34
36
40
42
48
50
52
56
54
56
60
65
41
48
46
56
41
48
46
20
56
25
41
20
48
20
61
25
46
20
56
25
70
32
59
25
70
32
68
25
79
32
48
20
61
25
56
25
70
32
70
25
91
40
68
25
79
32
4
2.5
23
22
28
22
29
26
34
27
35
32
4
2.5
42
62
33
5
3.0
43
64
5
3.0
6
3.5
4
2.5
5
5
6
3.0
3.0
3.5
33
44
34
45
50
74
52
77
53
79
42
54
76
RSIC
L
W h9
K
H
UNIT: mm
BASIC RATE LOAD (Kgf )
SCREW SIZE
O.D.
BALL
TURNS
LEAD
DIA.
EFFECTIVE
5
3.175
6
50
8
10
12
6
3.969
4.762
6.35
7.938
3.969
8
4.762
10
6.35
12
7.938
10
6.35
12
7.938
63
80
16
20
77
9.525
9.525
Dynamic
Static
NUT
KEYWAY
STIFFNESS
6
(1x10 REV.)
Dg6
L
K
48
20
W
H
4
2.5
Ca
Co
4
1730
6760
6
2450
10140
4
2380
8250
6
3370
12380
4
3010
9610
6
4260
14420
3
3430
9300
4
4390
12400
6
6220
18600
102
40
97
3
4510
11150
82
40
51
4
5770
14870
95
40
4
2610
10550
56
25
6
3700
15830
70
32
4
3375
12200
70
32
6
4780
18300
91
40
4
5020
16450
6
7110
24680
4
6580
19430
6
9320
29150
4
5510
21200
6
7810
31800
4
7500
25700
6
10620
38550
3
9770
31700
4
12510
42270
3
9770
31700
4
12510
42270
65
68
70
74
78
80
82
88
92
105
110
115
115
61
25
56
25
70
32
70
32
91
40
68
32
79
32
79
32
102
40
95
40
123
50
79
32
102
40
95
40
123
50
106
40
124
50
126
50
149
63
5
5
3.0
3.0
60
89
62
92
64
94
50
6
6
3.5
3.5
6
3.5
6
3.5
8
4.0
8
4.0
8
4.0
8
4.0
10
5.0
10
5.0
66
68
75
110
77
114
80
118
82
121
97
143
100
147
86
113
86
113
RDIC
L
W h9
K
H
UNIT: mm
BASIC RATE LOAD (Kgf )
SCREW SIZE
BALL
TURNS
O.D.
LEAD
DIA.
EFFECTIVE
16
5
3.175
5
3.175
20
6
3.969
5
3.175
6
3.969
5
3.175
25
32
6
8
10
40
3.969
4.762
6.35
5
3.175
6
3.969
8
4.762
10
6.35
Dynamic
Static
NUT
KEYWAY
STIFFNESS
6
(1x10 REV.)
Ca
Co
3
765
1240
3
860
1710
4
1100
2280
3
1080
2050
4
1380
2730
3
980
2300
4
1250
3070
Dg6
L
K
W
H
30
72
20
3
1.8
20
3
1.8
34
36
40
75
85
87
20
103
25
75
85
20
2.5
1095
3060
4
1400
4080
6
1980
6120
105
25
99
3
1500
3750
87
20
52
4
1920
5000
103
25
6
2720
7500
127
32
3
1820
4230
109
25
4
2330
5640
3
2605
5310
4
3340
7080
4
1575
5290
6
2230
7940
4
2130
6410
6
3020
9620
4
2720
7620
6
3850
11430
3
3010
7100
4
3850
9470
56
60
65
20
4
3
54
20
85
2.5
2740
3650
56
75
4
54
1275
52
25
2.5
46
41
1630
50
20
4
45
35
3
48
87
2.5
34
4
42
103
4
37
127
32
135
25
155
32
85
20
105
25
103
25
127
32
127
25
161
40
135
25
155
32
42
56
51
5
3.0
67
69
101
5
6
3.0
3.5
4
2.5
5
3.0
5
3.0
6
3.5
53
70
55
72
81
119
83
121
85
125
66
87
78
RDIC
L
W h9
K
H
UNIT: mm
BASIC RATE LOAD (Kgf )
SCREW SIZE
O.D.
BALL
TURNS
LEAD
DIA.
EFFECTIVE
5
3.175
6
3.969
8
4.762
10
6.35
50
12
7.938
6
3.969
8
4.762
10
6.35
12
7.938
63
10
80
12
16
20
79
6.35
7.938
9.525
9.525
Dynamic
Static
NUT
KEY WAY
STIFFNESS
6
(1x10 REV.)
Ca
Co
4
1730
6760
6
2450
10140
4
2380
8250
6
3370
12380
4
3010
9610
6
4260
14420
3
3430
9300
4
4390
12400
Dg6
65
68
70
74
L
K
85
20
105
25
103
25
127
32
127
32
161
40
135
32
155
32
40
6
6220
18600
197
3
4510
11150
161
4
5770
14870
4
2610
10550
6
3700
15830
4
3375
12200
6
4780
18300
4
5020
16450
6
7110
24680
4
6580
19430
6
9320
29150
4
5510
21200
6
7810
31800
4
7500
25700
6
10620
38550
3
9770
31700
4
12510
42270
3
9770
31700
4
12510
42270
78
80
82
88
92
105
110
115
115
185
40
106
25
130
32
131
32
165
40
160
32
202
40
185
40
238
50
160
32
202
40
185
40
238
50
200
40
236
50
245
50
289
63
W
H
4
2.5
5
3.0
5
3.0
6
3.5
96
141
99
146
102
149
80
105
155
6
3.5
6
3.5
6
3.5
8
4.0
8
4.0
8
8
10
10
4.0
4.0
5.0
5.0
82
107
119
176
122
180
127
188
130
192
154
226
159
234
136
179
136
179
13.3 High Lead Ballscrews
High-lead Ball Screws are essential elements and parts for high-speed machine tools of next century.
Features:
It is important for a High-lead Ballscrew to be with characteristics of high rigidity, low noise and thermal
control. PMI's designs and treatments are taken for following:
High DN Value
The DN value can be 130,000 in normal case. For some special cases, for example in a fixed ends case, the
DN value can be as high as 140,000. Please contact our engineers for this special application.
High Speed
PMI's High-speed Ballscrews provide 100 m/min and even higher traverse speed for machine tools for
high performance cutting.
High Rigidity
Both the screw and ballnut are surface hardened to a specific hardness and case depth to maintain high
rigidity and durability.
Multiple thread starts are available to make more steel balls loaded in the ballnut for higher rigidity and
durability.
Low Noise
Special design of ball circulation tubes (patent pending) offer smooth ball circulation inside the ballnut. It also
makes safe ball fast running into the tubes without damaging the tubes.
Accurate ball circle diameter (BCD) through whole threads for consistent drag torque and low noise.
80
FSWE
L
Q(oil
( hole)
S
X
Y
T
Z
W
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
LEAD
BALL
DIA.
20
16
3.969
20
3.969
16
3.969
20
4.762
25
16
3.969
32
20
32
16
3.969
4.762
6.35
36
20
16
6.35
6.35
40
81
20
6.35
40
6.35
TURNS
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
circuit xrow
Ca
Co
1.5x1
830
1530
2.5x1
1210
2380
1.5x1
830
1530
1.5x1
920
1930
2.5x1
1340
3000
NUT
Dg6
46
46
58
L
BOLT
W
G
H
S
73.5 13
59
21
42
10 5.5 9.5 5.5 M6x1P
66 73.5 13
59
21
42
10 5.5 9.5 5.5 M6x1P 23
75
68
X
Y
OIL HOLE STIFFNESS
T
59
A
FIT
Z
Q
23
33
26
85
15
71
32
64
15 6.6 11 6.5 M6x1P
85
15
71
32
64
15 6.6 11 6.5 M6x1P 28
83 108 15
90
41
82
15
84
1.5x1
1170
2300
1010
2480
2.5x1
1470
3860
3.5x1
1910
5240
99
60
1.5x1
1010
2480
74
31
2.5x1
1470
3860
1910
5240
75
38
1.5x1
3.5x1
58
FLANGE
67
74
74
94 108 15
1.5x1
1300
3010
2050
4450
73
2.5x1
2990
6920
89
3890
9390
5x1
4750
11860
2.5x1
2990
6920
3.5x1
3890
9390
90
41
82
15
9
14 8.5 M8x1P 45
14 8.5 M8x1P 45
114
1.5x1
3.5x1
31
9
74
75
60
100 108 15
105
90
41
82
15
9
14 8.5 M8x1P 33
44
118 16
96
38
76
15
11 17.5 8.5 M8x1P
121
78
100
120
1.5x1
2180
5000
76
2.5x1
3180
7780
92
3.5x1
4130
10560
86
108
61
74
90
118 16
98
38
76
15
11 17.5 8.5 M8x1P
56
74
44
128 18 106 49
98
15
11 17.5 11 PT1/8"
64
83
5x1
5050
13340
124
103
1.5x1
2180
5000
83
42
2.5x1
3180
7780
3.5x1
4130
10560
5x1
5050
13340
1.5x1
2180
5000
86
103
98
15
11 17.5 11 PT1/8"
123 128 18 106 49
98
15
11 17.5 11 PT1/8" 42
143
86
61
128 18 106 49
123
79
98
FSWE
L
Q(oil
( hole)
S
X
Y
T
Z
W
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
16
7.144
50
20
50
16
7.144
7.938
7.938
63
20
9.525
TURNS
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Ca
Co
1.5x1
2790
7240
2.5x1
4080
11260
3.5x1
5300
15280
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
93
100
109
125
50
146 25 122 55 110 15
14
20
13 PT1/8"
73
96
5x1
6480
19300
141
117
1.5x1
2790
7240
104
50
2.5x1
4080
11260
3.5x1
5300
15280
5x1
6480
19300
1.5x1
3250
7770
1.5x1
3600
9920
2.5x1
5260
15430
3.5x1
6840
20940
100
124
144
146 25 122 55 110 15
14
20
13 PT1/8"
164
14
20
13 PT1/8" 53
99
115
131
96
117
105 157 152 25 128 58 116 20
120
73
61
180 28 150 72 144 25
18
26 17.5 PT1/8"
89
116
5x1
8360
26450
147
143
1.5x1
6070
16630
111
73
2.5x1
8870
25870
3.5x1
11530
35110
5x1
14090
44350
122
131
151
171
182 28 150 72 144 25
18
26 17.5 PT1/8"
105
137
169
82
FDWE
L
Q(oil hole)
S
X
Y
T
Z
W
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
LEAD
BALL
DIA.
20
16
3.969
20
3.969
16
3.969
20
4.762
25
16
3.969
32
20
3.969
32
4.762
16
6.35
36
20
16
6.35
6.35
40
20
40
83
6.35
6.35
TURNS
BASIC RATE LOAD (Kgf )
Dynamic
Static
(1x106 REV.)
circuit xrow
Ca
Co
1.5x1
830
1530
2.5x1
1210
2380
1.5x1
830
1530
1.5x1
920
1930
2.5x1
1340
3000
NUT
Dg6
46
46
58
58
FLANGE
L
G
H
S
73.5 13
59
21
42
10 5.5 9.5 5.5 M6x1P
128 73.5 13
59
21
42
10 5.5 9.5 5.5 M6x1P 33
141
116
X
Y
OIL HOLE STIFFNESS
W
Z
Q
32
64
15 6.6 11 6.5 M6x1P
135 85
15
71
32
64
15 6.6 11 6.5 M6x1P 41
1170
2300
2480
115
2.5x1
1470
3860
147
3.5x1
1910
5240
5x1
2340
6620
1.5x1
1010
2480
2.5x1
1470
3860
3.5x1
1910
5240
1.5x1
1300
3010
1.5x1
2050
4450
2.5x1
2990
6920
3.5x1
3890
9390
179
108 15
90
41
82
15
9
14 8.5 M8x1P
92
47
174 108 15
90
41
82
15
9
14 8.5 M8x1P 69
90
41
82
15
9
14 8.5 M8x1P 48
214
92
196 108 15
121
185
69
113
134
153
56
47
211
75
38
71
1010
74
50
15
1.5x1
74
34
85
148
1.5x1
74
BOLT
T
109
A
FIT
65
118 16
96
38
76
15
11 17.5 8.5 M8x1P
93
112
5x1
4750
11860
217
139
2.5x1
2990
6920
180
85
3.5x1
3890
9390
1.5x1
2180
5000
2.5x1
3180
7780
78
220
118 16
98
38
76
15
11 17.5 8.5 M8x1P
118
86
150
182
112
65
128 18 106 49
98
15
11 17.5 11 PT1/8"
97
3.5x1
4130
10560
5x1
5050
13340
214
159
62
1.5x1
2180
5000
143
2.5x1
3180
7780
183
3.5x1
4130
10560
5x1
5050
13340
1.5x1
2180
5000
86
92
128 18 106 49
98
15
11 17.5 11 PT1/8"
243 128 18 106 49
98
15
11 17.5 11 PT1/8" 62
223
263
86
128
121
150
FDWE
L
Q(oil hole)
S
Y
X
T
Z
W
UNIT: mm
EFFECTIVE
SCREW SIZE
O.D.
BALL
LEAD DIA.
16
7.144
50
20
50
16
7.144
7.938
7.938
63
20
9.525
TURNS
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
FIT
BOLT
OIL HOLE STIFFNESS
6
circuit xrow
(1x10 REV.)
Ca
Co
1.5x1
2790
7240
2.5x1
4080
11260
3.5x1
5300
15280
Dg6
L
A
T
W
G
H
S
X
Y
Z
Q
141
100
173
205
75
146 25 122 55 110 15
14
20
13 PT1/8"
110
146
5x1
6480
19300
237
181
1.5x1
2790
7240
164
75
2.5x1
4080
11260
3.5x1
5300
15280
5x1
6480
19300
1.5x1
3250
7770
1.5x1
3600
9920
2.5x1
5260
15430
3.5x1
6840
20940
100
204
244
146 25 122 55 110 15
14
20
13 PT1/8"
284
14
20
13 PT1/8" 78
154
186
218
146
181
105 307 152 25 128 58 116 20
120
110
91
180 28 150 72 144 25
18
26 17.5 PT1/8"
138
179
5x1
8360
26450
250
222
1.5x1
6070
16630
171
107
2.5x1
8870
25870
3.5x1
11530
35110
5x1
14090
44350
122
211
251
291
182 28 150 72 144 25
18
26 17.5 PT1/8"
159
210
260
84
FSKC
L
Q(oil hole)
4-X
Assembly Hole
T
W
H
EFFECTIVE
SCREW SIZE
85
TURNS
UNIT: mm
BASIC RATE LOAD (Kgf )
Dynamic
Static
NUT
FLANGE
OIL HOLE STIFFNESS
BOLT
BALL
DIA.
circuit xrow
Ca
Co
Dg6
L
A
T
H
W
X
Q
(1x106 REV.)
O.D.
LEAD
15
10
3.715
2.8x2
1410
2800
34
44
57
10
40
45
5.5
M6x1P
34
16
16
3.175
1.8x2
700
1400
32
38
53
10
38
42
4.5
M6x1P
18
20
20
3.175
1.8x2
1100
2500
39
52
62
10
46
50
5.5
M6x1P
29
25
25
3.969
1.8x2
1650
3900
1.8x4
2830
7800
47
62
74
12
56
60
6.6
M6x1P
1.8x2
2360
5940
1.8x4
4280
11800
2.8x2
6450
15220
1.8x2
3860
9900
1.8x4
7000
19880
32
32
4.762
36
24
7.144
40
40
6.35
58
78
92
15
68
74
9
M6x1P
75
94
115 18
86
94
11
M6x1P
73
95
114 17
84
93
11
M6x1P
35
69
44
87
77
55
108
Rolled BallScrews
Features:
1. Lower cost:
Since the manufacturing process for a rolled screw is less than that of a
ground one. Hence the cost for rolled screw is lower.
2. Faster delivery:
There are standard ballnuts and screw shafts in stock. The delivery
for rolled Ballscrews are made faster than the ground ones.
Lead accuracy:
PMI rolled Ballscrews are rolled by using German CNC rolling machine. It
can well control the straightness; circleness and
of Ballscrews. The lead
accuracy of PMI rolled Ballscrews can be as good as 0.018 mm/300 mm.
87
FSWW
4-X
Assembly Holes
Q(oil hole)
W
H
ITEM SCREW
NO.
O.D.
LEAD
BALL EFFECTIVE
DIA.
TURNS
BASIC RATED LOAD (Kg
( gf )
STATIC
circuit x row
DYNAMIC
6
(1x10 REV.)
Ca
AXIAL
PLAY
O.D.
D
Length
L
A
0.10
35
34
57
990
0.10
40
40
57
625
1450
0.10
44
41
67
2.5x1
1100
2200
0.15
52
61
82
3.175
2.5x1
720
1830
0.10
50
41
73
5
3.175
2.5x2
1120
3710
0.10
50
56
73
25
10
6.350
2.5x1
1720
3590
0.20
60
69
96
8
25
10
6.350
2.5x2
3200
7170
0.20
60
97
96
9
32
10
6.350
2.5x1
1930
4680
0.20
67
69
103
10
32
10
6.350
2.5x2
3130
9410
0.20
67
97
103
11
40
10
6.350
2.5x2
3520
12000
0.20
76
100
116
12
50
10
6.350
2.5x2
3900
15000
0.20
88
101
128
13
50
10
6.350
3.5x2
4940
21000
0.20
88
126
128
Co
d
l
1
14
4
2.381
3.5x1
500
1100
2
14
5
3.175
2.5x1
515
3
20
5
3.175
2.5x1
4
20
10
4.762
5
25
5
6
25
7
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
89
FSWW
L
T
Temporary
Dummy Shaft
Ls
UNIT:mm
BALLNUT DIMENSION
SCREW SPINDLE
Assembly
Hole
STIFFNESS
X
Oil Hole
Q
-
4.5
M6x1P
40
-
4.5
10
55
52
12
67
11
Flange
T
W
NUT MODEL
NO.
Root DIA.
dr
H
10
40
15
9RFSWW1404-3.5P
10
M6x1P
11
5.5
M6x1P
64
6.6
61
56
11
61
15
Standard Screw Length Screw Model
Ls
NO.
12.00
500 1000
PS1404A
9RFSWW1405-2.5P
11.42
500 1000
PS1405A
15
9RFSWW2005-2.5P
17.42
500 1000 1500
PS2005A
M6x1P
16
9RFSWW2010-2.5P
16.23
500 1000 1500
PS2010A
6.6
M6x1P
18
9RFSWW2505-2.5P
22.42
1000 2000 2500
PS2505A
56
6.6
M6x1P
37
9RFSWW2505-5.0P
22.42
1000 2000 2500
PS2505A
78
72
9
M6x1P
21
9RFSWW2510-2.5P
20.05
1000 2000 2500
PS2510A
15
78
72
9
M6x1P
40
9RFSWW2510-5.0P
20.05
1000 2000 2500
PS2510A
15
85
78
9
M6x1P
25
9RFSWW3210-2.5P
27.05
1000 2000 2500
PS3210A
15
85
78
9
M6x1P
49
9RFSWW3210-5.0P
27.05
1000 2000 2500
PS3210A
17
96
88
11
M6x1P
59
9RFSWW4010-5.0P
35.05
2000 3000 3500
PS4010A
18
108
100
11
PT1/8"
72
9RFSWW5010-5.0P
45.05
2000 3000 3500
PS5010A
18
108
100
11
M6x1P
98
9RFSWW5010-7.0P
45.05
2000 3000 3500
PS5010A
90
FSVW
Q(oil hole)
V
5-X
Assembly Holes
W
U
G
ITEM SCREW LEAD
NO.
O.D.
BALL
DIA.
( gf )
(Kg
EFFECTIVE
DYNAMIC
6
(1x10 REV.)
circuit xrow
Ca
TURNS
STATIC
AXIAL
PLAY
O.D.
D
Length
L
A
T
Flange
W
0.10
25
42
55
10
40
990
0.10
30
43
50
10
40
550
1140
0.10
34
43
54
10
44
2.5x1
625
1450
0.15
40
43
60
12
50
4.762
2.5x1
1100
2200
0.10
40
60
67
12
53
5
3.175
2.5x1
720
1830
0.20
42
45
71
12
57
25
5
3.175
2.5x2
1120
3710
0.20
42
60
71
12
57
8
25
10
6.350
2.5x1
1720
3590
0.20
44
68
79
15
62
9
25
10
6.350
2.5x2
3200
7170
0.20
44
98
79
15
62
10
32
10
6.350
2.5x1
1930
4680
0.20
55
72
97
18
75
11
32
10
6.350
2.5x2
3130
9410
0.20
55
101
97
18
75
12
40
10
6.350
3.5x2
4450
16800
0.20
65
123
114
20
90
13
50
10
6.350
3.5x2
4940
21000
0.20
80
125
138
22
110
Co
d
l
1
14
4
2.381
3.5x1
500
1100
2
14
5
3.175
2.5x1
515
3
16
5
3.175
2.5x1
4
20
5
3.175
5
20
10
6
25
7
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
91
FSVW
L
Temporary
Dummy Shaft
T
Ls
UNIT:mm
BALLNUT DIMENSION
G
Return tube
U
V
SCREW SPINDLE
Assembly
Hole
STIFFNESS
X
Oil Hole
Q
NUT MODEL
NO.
Root DIA.
dr
Standard Screw Length Screw Model
Ls
NO.
19
19
21
4.5
M6x1P
15
9RFSVW1404-3.5P
12.00
500 1000
PS1404A
22
22
21
4.5
M6x1P
11
9RFSVW1405-2.5P
11.42
500 1000
PS1405A
24
20
22
4.5
M6x1P
13
9RFSVW1605-2.5P
13.42
500 1000 1500
PS1605A
28
28
27
4.5
M6x1P
15
9RFSVW2005-2.5P
17.42
500 1000 1500
PS2005A
30
30
30
6.6
M6x1P
16
9RFSVW2010-2.5P
16.23
500 1000 1500
PS2010A
28
28
32
6.6
M6x1P
18
9RFSVW2505-2.5P
22.42
1000 2000 2500
PS2505A
28
28
32
6.6
M6x1P
37
9RFSVW2505-5.0P
22.42
1000 2000 2500
PS2505A
34
34
37
9.0
M6x1P
21
9RFSVW2510-2.5P
20.05
1000 2000 2500
PS2510A
34
34
37
9.0
M6x1P
40
9RFSVW2510-5.0P
20.05
1000 2000 2500
PS2510A
39
39
44
11
M6x1P
25
9RFSVW3210-2.5P
27.05
1000 2000 2500
PS3210A
39
39
44
11
M6x1P
49
9RFSVW3210-5.0P
27.05
1000 2000 2500
PS3210A
44
44
52
14
M6x1P
81
9RFSVW4010-7.0P
35.05
2000 3000 3500
PS4010A
52
52
62
18
M6x1P
98
9RFSVW5010-7.0P
45.05
2000 3000 3500
PS5010A
92
RSVW
V
U
ITEM SCREW
NO.
O.D.
LEAD
BALL EFFECTIVE
DIA.
TURNS
BASIC RATED LOAD (Kg
( gf )
STATIC
circuit x row
DYNAMIC
6
(1x10 REV.)
Ca
AXIAL
PLAY
O.D.
D
Length
L
0.10
25
42
990
0.10
30
43
625
1450
0.10
40
43
2.5x1
720
1830
0.10
42
48
3.175
2.5x2
1120
3710
0.10
42
63
10
6.350
2.5x1
1720
3590
0.20
44
68
25
10
6.350
2.5x2
3200
7170
0.20
44
98
8
32
10
6.350
2.5x1
1930
4680
0.20
55
72
9
32
10
6.350
2.5x2
3130
9410
0.20
55
101
10
40
10
6.350
3.5x2
4450
16800
0.20
65
128
11
50
10
6.350
3.5x2
4940
21000
0.20
80
143
Co
d
l
1
14
4
2.381
3.5x1
500
1100
2
14
5
3.175
2.5x1
515
3
20
5
3.175
2.5x1
4
25
5
3.175
5
25
5
6
25
7
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
93
RSVW
Temporary
Dummy Shaft
L
Ls
M
T
UNIT:mm
BALLNUT DIMENSION
Flange
SCREW SPINDLE
STIFFNESS
M
T
Return Tube
U
V
NUT MODEL
NO.
Root DIA.
dr
M24x1.0P
10
19
21
15
9RRSVW1404-3.5P
M26x1.5P
10
22
21
11
M36x1.5P
12
28
27
M40x1.5P
15
28
M40x1.5P
15
M42x1.5P
Standard Screw Length Screw Model
Ls
NO.
12.00
500 1000
PS1404A
9RRSVW1405-2.5P
11.42
500 1000
PS1405A
15
9RRSVW2005-2.5P
17.42
500 1000 1500
PS2005A
32
18
9RRSVW2505-2.5P
22.42
1000 2000 2500
PS2505A
28
32
37
9RRSVW2505-5.0P
22.42
1000 2000 2500
PS2505A
15
34
37
21
9RRSVW2510-2.5P
20.05
1000 2000 2500
PS2510A
M42x1.5P
15
34
37
40
9RRSVW2510-5.0P
20.05
1000 2000 2500
PS2510A
M50x1.5P
18
39
44
25
9RRSVW3210-2.5P
27.05
1000 2000 2500
PS3210A
M50x1.5P
18
39
44
49
9RRSVW3210-5.0P
27.05
1000 2000 2500
PS3210A
M60x2.0P
25
44
52
81
9RRSVW4010-7.0P
35.05
2000 3000 3500
PS4010A
M75x2.0P
40
52
62
98
9RRSVW5010-7.0P
45.05
2000 3000 3500
PS5010A
94
FSBW
Q(oil hole)
4-X
Assembly Holes
W
H
ITEM SCREW
NO.
O.D.
LEAD
BALL EFFECTIVE
DIA.
TURNS
BASIC RATED LOAD (Kg
( gf )
STATIC
circuit x row
DYNAMIC
6
(1x10 REV.)
Ca
AXIAL
PLAY
O.D.
D
Length
L
A
0.10
22
34
41
320
0.10
24
34
44
350
600
0.10
26
41
47
2.5x1
270
350
0.10
26
34
47
2.000
2.5x1
270
350
0.10
26
40
47
4
2.381
3.5x1
545
1100
0.10
31
40
50
14
5
3.175
2.5x1
535
990
0.10
32
40
50
8
16
5
3.175
2.5x1
570
1130
0.10
34
40
54
9
20
4
2.381
2.5x1
415
850
0.10
40
41
59
10
20
5
3.175
2.5x1
650
1450
0.10
40
40
59
11
25
4
2.381
2.5x1
450
980
0.10
43
41
67
12
25
5
3.175
2.5x1
720
1800
0.10
43
40
67
Co
d
l
1
8
2.5
2.000
2.5x1
220
260
2
10
2.5
2.000
2.5x1
250
3
10
4
2.381
2.5x1
4
12
2.5
2.000
5
12
5
6
14
7
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
95
FSBW
L
Temporary
Dummy Shaft
T
Ls
UNIT:mm
BALLNUT DIMENSION
SCREW SPINDLE
Assembly
Hole
STIFFNESS
X
Oil Hole
Q
26
4.5
M6x1P
34
28
4.5
10
37
30
10
37
10
Flange
T
W
NUT MODEL
NO.
Root DIA.
dr
H
8
31
5.0
9RFSBW0825-2.5P
8
M6x1P
6.5
4.5
M6x1P
30
4.5
37
30
10
40
10
Standard Screw Length Screw Model
Ls
NO.
6.40
200 300
PS0825A
9RFSBW1025-2.5P
8.40
200 300
PS1025A
7.5
9RFSBW1004-2.5P
8.00
300 500
PS1004A
M6x1P
8.2
9RFSBW1225-2.5P
10.40
500 1000
PS1225A
4.5
M6x1P
8.2
9RFSBW1205-2.5P
10.40
500 1000
PS1205A
37
4.5
M6x1P
15
9RFSBW1404-3.5P
12.00
500 1000
PS1404A
40
38
4.5
M6x1P
11
9RFSBW1405-2.5P
11.42
500 1000
PS1405A
10
44
40
4.5
M6x1P
13
9RFSBW1605-2.5P
13.42
500 1000
PS1605A
10
50
46
4.5
M6x1P
14
9RFSBW2004-2.5P
18.00
500 1000 1500
PS2004A
10
50
46
4.5
M6x1P
16
9RFSBW2005-2.5P
17.42
500 1000 1500
PS2005A
10
55
50
4.5
M6x1P
17
9RFSBW2504-2.5P
23.00
500 1000 1500
PS2504A
10
55
50
5.5
M6x1P
18
9RFSBW2505-2.5P
22.42
500 1000 1500
PS2505A
96
FSIW
60Ą
60Ą
60Ą
60Ą
Q(oil hole)
Q(oil hole)
G
H
Q(oil hole)
60Ą
60Ą
W
W
ITEM SCREW LEAD
NO.
O.D.
BALL
DIA.
EFFECTIVE
TURNS
BASIC RATED LOAD (Kg
( gf )
DYNAMIC
6
(1x10 REV.)
Ca
STATIC
W
AXIAL
PLAY
O.D. Length
D
L
A
T
Flange
W
G
0.10
26
47
46
10
36
-
1030
0.10
30
42
49
10
39
20
830
1890
0.10
34
53
57
12
45
20
4
940
2420
0.10
40
53
63.5
12
51
22
3.175
4
1050
3390
0.10
48
53
73.5
12
60
30
10
6.350
4
2510
5880
0.20
54
90
88
16
70
34
40
5
3.175
4
1180
4390
0.10
55
56
88.5
16
72
29
8
40
10
6.350
4
2630
7860
0.20
64
93
106
18
84
43
9
50
10
6.350
4
2770
10290
0.20
74
93
116
18
94
42
Co
d
l
1
14
4
2.381
4
400
890
2
16
5
3.175
3
570
3
20
5
3.175
4
4
25
5
3.175
5
32
5
6
32
7
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
97
FSIW
L
T
S
Temporary
Dummy Shaft
Ls
X
Y
Z
UNIT:mm
BALLNUT DIMENSION
Fit
SCREW SPINDLE
Assembly Hole
Oil Hole
STIFFNESS
NUT MODEL
NO.
Root DIA.
dr
Standard Screw Length Screw Model
Ls
NO.
12.00
500 1000
PS1404A
9RFSIW1605-3.0P
13.42
500 1000 1500
PS1605A
21
9RFSIW2005-4.0P
17.42
500 1000 1500
PS2005A
M6x1P
26
9RFSIW2505-4.0P
22.42
1000 2000 2500
PS2505A
6.5
M8x1P
32
9RFSIW3205-4.0P
29.42
1000 2000 2500
PS3205A
14
8.5
M8x1P
34
9RFSIW3210-4.0P
27.05
1000 2000 2500
PS3210A
9
14
8.5
M8x1P
38
9RFSIW4005-4.0P
37.42
2000 3000 3500
PS4005A
20
11
17.5
11
M8x1P
41
9RFSIW4010-4.0P
35.05
2000 3000 3500
PS4010A
20
11
17.5
11
M8x1P
50
9RFSIW5010-4.0P
45.05
2000 3000 3500
PS5010A
H
S
X
Y
Z
Q
-
10
4.5
8
4.5
M6x1P
18
9RFSIW1404-4.0P
40
10
4.5
-
-
M6x1P
17
40
12
5.5
9.5
5.5
M6x1P
44
15
5.5
9.5
5.5
60
15
6.6
11
68
15
9
58
15
86
84
98
SSVW
Oil Hole M6x1P
4-JxK
Assembly Holes
W
B
F
G
H
ITEM SCREW
NO.
O.D.
LEAD
BALL
DIA.
EFFECTIVE
TURNS
BASIC RATED LOAD (Kg
( gf )
STATIC
circuit x row
DYNAMIC
6
(1x10 REV.)
Ca
AXIAL
PLAY Length Width Height Assembly Hole
Co
d
l
1
14
4
2.381
3.5x1
545
1110
2
14
5
3.175
2.5x1
535
3
16
5
3.175
2.5x1
4
20
5
3.175
5
20
10
6
25
7
U
L
W
H
A
B
0.10
35
34
13
22
26
990
0.10
35
34
13
22
26
590
1210
0.10
35
42
16
22
32
2.5x1
650
1450
0.10
35
48
17
22
35
4.762
2.5x1
1100
2220
0.15
58
48
18
35
35
5
3.175
2.5x1
720
1850
0.10
35
60
20
22
40
25
10
6.350
2.5x2
3240
7170
0.20
94
60
23
60
40
8
28
6
3.175
2.5x2
1380
4140
0.10
67
60
22
40
40
9
32
10
6.350
2.5x1
2010
4700
0.20
64
70
26
45
50
10
32
10
6.350
2.5x2
3640
9410
0.20
94
70
26
60
50
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
99
SSVW
L
C
E
Temporary
Dummy Shaft
A
Ls
UNIT:mm
BALLNUT DIMENSION
Position of
Oil Hole
SCREW SPINDLE
Height from
Reference Surface
STIFFNESS
NUT MODEL
NO.
Root DIA.
dr
Standard Screw Length Screw Model
Ls
NO.
12.00
500 1000
PS1404A
9RSSVW1405-2.5P
11.42
500 1000
PS1405A
13
9RSSVW1605-2.5P
13.42
500 1000 1500
PS1605A
22
15
9RSSVW2005-2.5P
17.42
500 1000 1500
PS2005A
9.5
30
16
9RSSVW2010-2.5P
16.23
500 1000 1500
PS2010A
5
9.5
25
18
9RSSVW2505-2.5P
22.42
1000 2000 2500
PS2505A
10
-
10
30
40
9RSSVW2510-5.0P
20.05
1000 2000 2500
PS2510A
M8x12
8
5
10
27
39
9RSSVW2806-5.0P
25.42
1000 2000 2500
PS2806A
9.5
M8x12
10
-
12
36
25
9RSSVW3210-2.5P
27.05
1000 2000 2500
PS3210A
17
M8x12
10
-
12
36
49
9RSSVW3210-5.0P
27.05
1000 2000 2500
PS3210A
C
JxK
E
F
G
U
6.5
M4x7
6
2
6
18
15
9RSSVW1404-3.5P
6.5
M4x7
6
2
6
18
11
6.5
M5x8
6
2
8
21
6.5
M6x10
6
3
9.15
11.5
M6x10
10
2
6.5
M8x12
7
17
M8x12
13.5
100
FSKW
Q(oil hole)
4-X
Assembly Holes
30Ą
30Ą
W
H
ITEM SCREW
NO.
O.D.
LEAD
BALL EFFECTIVE
DIA.
TURNS
BASIC RATED LOAD (Kg
( gf )
STATIC
circuit x row
DYNAMIC
6
(1x10 REV.)
Ca
AXIAL
PLAY
O.D.
D
Length
L
A
0.10
34
44
57
640
0.10
32
38
53
780
2280
0.10
39
52
62
1.8x2
1230
3570
0.10
47
64
74
3.969
1.8x4
2230
7140
0.10
47
64
74
32
4.762
1.8x2
1760
5500
0.15
58
78
92
32
32
4.762
1.8x4
3200
11000
0.15
58
78
92
8
40
40
6.350
1.8x2
2870
9170
0.20
73
95
114
9
40
40
6.350
1.8x4
5220
18340
0.20
73
95
114
Co
d
l
1
15
10
3.175
2.8x2
1000
2570
2
16
16
3.175
1.8x1
330
3
20
20
3.175
1.8x2
4
25
25
3.969
5
25
25
6
32
7
Note:
Stiffness of nut:
Stiffness values listed above are derived from theoretical formula to the elastic deformation between thread grooves and
balls while axial load is 30% dynamic load rating. Refer to P.15.
101
FSKW
L
Temporary
Dummy Shaft
T
Ls
UNIT:mm
BALLNUT DIMENSION
SCREW SPINDLE
Assembly
Hole
STIFFNESS
X
Oil Hole
Q
40
5.5
M6x1P
42
38
4.5
10
50
46
12
60
12
Flange
T
W
NUT MODEL
NO.
Root DIA.
dr
H
10
45
26
9RFSKW1510-5.6P
10
M6x1P
9
5.5
M6x1P
56
6.6
60
56
15
74
15
Standard Screw Length Screw Model
Ls
NO.
12.42
500 1000
PS1510A
9RFSKW1616-1.8P
13.42
500 1000 1500
PS1616A
21
9RFSKW2020-3.6P
17.42
500 1000 1500
PS2020A
M6x1P
27
9RFSKW2525-3.6P
21.73
1000 2000 2500
PS2525A
6.6
M6x1P
52
9RFSKW2525-7.2P
21.73
1000 2000 2500
PS2525A
68
9
M6x1P
33
9RFSKW3232-3.6P
28.23
1000 2000 2500
PS3232A
74
68
9
M6x1P
65
9RFSKW3232-7.2P
28.23
1000 2000 2500
PS3232A
17
93
84
11
M6x1P
42
9RFSKW4040-3.6P
35.05
2000 3000 3500
PS4040A
17
93
84
11
M6x1P
81
9RFSKW4040-7.2P
35.05
2000 3000 3500
PS4040A
102

Benzer belgeler

D‹fiS‹Z EMT BORU AKSESUARLARI

D‹fiS‹Z EMT BORU AKSESUARLARI BORU ‹Ç‹N BUAT, ARMATÜR VE PANO’YA SONLANDIRMA RAKORLARI ÇEL‹K SIKMALI RAKOR/STEEL COMPRESSION CONNECTORS Rakorlar Diflsiz EMT Borular› buat, armatür, pano ve benzeri yerlerde sonland›rmada kullan›...

Detaylı

versacut - Machine Solutions Inc.

versacut - Machine Solutions Inc. throat and rugged backgauge running on ballscrews by motors with brake makes it a versatile shear to run low volume/high mix product runs as well as thin strips of all thicknesses Automatic angle a...

Detaylı

PLAZMA KESME MAKİNELERİ • PLASMA CUTTING MACHINES

PLAZMA KESME MAKİNELERİ • PLASMA CUTTING MACHINES is placed as a leading manufacturer and global supplier of sheet metal working machinery specialising in the production of press brakes, shears, notchers, punching machines, laser cutting systems, ...

Detaylı