yari-r emann man foldunun l ghtl ke sotrop k altman foldu lightlike

Transkript

yari-r emann man foldunun l ghtl ke sotrop k altman foldu lightlike
Yar - Riemann Manifoldunun Lightlike sotropik Altmanifoldu
C.B.Ü. Fen Bilimleri Dergisi
2.2 (2006) 123 128
ISSN 1305-1385
C.B.U. Journal of Science
2.2 (2006) 123 128
YARI-R EMANN MAN FOLDUNUN
L GHTL KE SOTROP K ALTMAN FOLDU
Erol YA AR1
Mu la Üniversitesi, Ula Ali Koçman M.Y.O., 48600 Ula-Mu la, Türkiye.
Özet: Bu makalede, yar -Riemann manifoldunun isotropic altmanifoldu çal ld . Lightlike isotropic
altmanifoldun denklem yap lar verildi. Sonra ise M isotropic altmanifoldu total geodezik yapan artlar elde
edildi.
LIGHTLIKE ISOTROPIC SUBMANIFOLD OF
SEMI-RIEMANNIAN MANIFOLD
Abstract: In this paper, we study isotropic submanifold of semi-Riemannian manifold. We give the
structure equations of lightlike isotropic submanifold. Then we obtain that the condition on M lightlike
isotropic submanifold is totally geodesic.
Key Words and Phrases : Lightlike isotropic submanifolds, Totally geodesic, Gauss and Codazzi equations.
MOS Clasification : 53B15 53B30 53C05
--------------------------------------------------------------------------------------------------------1
Sorumlu Yazar
[email protected]
C.B.Ü. Fen Bil. Dergisi (2006)123 128, 2006 /Erol YA AR
1. Introduction
The theory of submanifolds of a Riemannian
or semi-Riemannian manifold is one of the
most important topics in differential
geometry. It is well known that the primary
difference between theory of lightlike
submanifold
and
semi-Riemannian
submanifold arises due to the fact that in the
first case, a part of the normal vector bundle
TM lies in the tangent bundle TM of the
~
submanifold M of M , whereas in the
second case TM TM ={0}. In 1992,
Duggal and Bejancu [3] introduced a half
lightlike submanifold M, of codimension 2
and found geometric conditions for the
induced connection on M to be metric
connection. In 2004, Erol K l ç and Bayram
ahin [5] studied coisotropic submanifold of
a semi-Riemannian manifold. In this study
they investigated the integrability condition
of the screen distribution and gave a
necessary and sufficient condition on Ricci
tensor of a coisotropic submanifold to be
symmetric.
In the present paper, we have proved that the
connection induced from semi-Riemannian
manifold of codimension (m+n) on lightlike
isotropic submanifold is metric. Besides we
obtain the structure equations of lightlike
isotropic submanifold and proved the
theorem on M in semi-Riemannian manifold
of constant curvature, of codimension (m+n).
2. Preliminaries
Let ( M , g ) be a real (2m+n)-dimensional
semi-Riemannian manifold of constant index
q such as m 1,1 q 2m, and M be an mdimensional submanifold of M . In case g
is degenerate on the tangent bundle TM of M.
We say that M is a lightlike submanifold of
~
M [2]. Throughout this paper we denote the
algebra of smooth function on M by F(M)
and the F(M) module of smooth section of a
vector bundle E over M by
(E). The
following range of induced is used :
124
i, j , k
1,..., r and
, ,
r 1,..., n .
For a degenerate tensor field g on M, there
exists a locally vector field
(TM ) ,
0 such as g ( X , ) 0 for any
X
(TM ) . Then each tangent space
Tx M we have
Tx M
u Tx M
g u, v
0, v Tx M
which is degenerate (m+1)-dimensional
subspace of Tx M . The radical (null)
subspace of Tx M , denoted by RadTx M , is
defined by
Tx M
Tx M
x
g
x
, Xx
0, X x Tx M .
The dimension of RadTx M
depends on
x M. The submanifold M of M is said to be
r-lightlike submanifold if the mapping
RadTM : x M RadTxM
define a smooth distribution on M of rank
r>0, where RadTM is called the radical
(null) distribution on M [2]. In this paper, we
study lightlike isotropic submanifold where
RadTM {0} and 1 r m .
Therefore, S (TM ) {0} . Thus we can write
(2.1)
TM M
TM
tr (TM )
(TM
ltr (TM )
S (TM ).
According to the decomposition (2.1), we
choose the field of frames { 1 ,..., m } and
{N1 ,..., N m , Wm 1 ,..., Wn } on M and M ,
respectively.
Example 2.1 Suppose that ( M , g ) be a
surface of R25 given by equations
x3
cos x1 , x 4
sin x1 , x 5 x 2 .
We choose a set of vectors { 1 , 2 , u1 , u2 }
given by
1
u1
so
TM
2
5
,
sin x1
that
2
1
sin x1
3
cos x1 4 ,
, u2 cos x1 1 4
RadTM TM sp{ 1 , 2 } ,
1
3
sp{ 1 , u1 , u2 }. Therefore M is an
Yar - Riemann Manifoldunun Lightlike sotropik Altmanifoldu
isotropic lightlike submanifold. Construct
two null vectors
N1 12 { 1 5 } and
{ 1 sin x1 3 cos x1 4 }
such as g ( N i , i )
{1, 2} and
ij for i, j
N2
ltr (TM )
Let W
1
2
cos x1
sin x1
3
4
be a spacelike
sp{W } . Thus
i
,W
Tx M
such
that g ( i , u ) 0, g (W ,W ) 0, u Tx M .
Above relation implies that
i
TM and
hence i RadTx M . Thus, locally there
exists a lightlike vector fields on M, it is also
denoted by i such as
g ( i ,Y )
0, X
(TM ), Y
(TM )
Consequently, the m-dimensional radical
distribution RadTM of lightlike isotropic
submanifld M of M is locally spanned by
i . We choose such a non-degenerate
distribution on the screen transversal vector
bundle S (TM ) of M. Thus we have the
following orthogonal direct decomposition
(2.2)
TM = Rad(TM) S(TM ).
Thus we choose W as a unit vector field and
put g (W , W )
where
1.
Theorem 2.2 Let ( M , g , S (TM )) be an
isotropic submanifold of ( M , g ). Suppose
that U be a coordinate neighborhood of M
and { 1 ,..., m } be a basis of (TM u ) . Then
there exist smooth {N1 ,..., N m } of TM M
such that g ( N i ,
j
)
ij
and
g ( N i , N j ) 0, g ( N i ,W ) 0,
for any i, j {1,..., m},
{m 1,..., n} and
W
( S (TM )) . Suppose that be the
Y
X
h s ( X , Y ),
Y
(2.4)
N
s
AN X
X
L
N
X
N,
(2.5)
s
AW X
XW
for any X , Y
(TM ), N
and
W
( S (TM ))
{ X Y , AN X , AW X }
X
{ 1 , 2 , N1 , N 2 , W } is a basis of R25 along M.
From (2.1), there exist
X
X
sp {N1 , N 2 }.
vector such that S (TM )
g( i , X )
~
Levi-Civita connection on M . According to
(2.1) we have
(2.3)
{h s ( X , Y ),
belong
L
W
s
X
to
respectively.
W
(ltr (TM ))
X
where
and
N , s XW , L X N , L XW }
(TM ) and
(tr (TM ))
Here
is
~
connection on M but
the
metric
s
and
are linear
connections on M and tr(TM) respectively.
Besides, we define the F(M)-bilinear
mappings
(2.6)
L
X
: (ltr (TM ))
(ltr (TM ));
L
( LV )
DX L ( LV ),
s
( SV )
DX s ( SV ),
X
(2.7)
s
X
: ( S (TM ))
( S (TM ));
X
(2.8)
D L : (TM )
L
D ( X , SV )
( S (TM ))
D
L
X
(ltr (TM ))
( SV ),
and
(2.9)
D s : (TM )
s
(ltr (TM ))
( S (TM ))
s
D ( X , LV ) D X (LV )
for any x
(TM ), V
(tr (TM )). Since
{ i , N j } are locally lightlike sections on
U
M , we define symmetric F ( M ) -
bilinear form D s and 1-forms pij ,
i
,
and V i on U by
Ds ( X ,Y )
g (h s ( X , Y ),W ),
Pij ( X )
i
L
g(
X
N i , i ),
g ( D s ( X , N i ),W ),
g(
s
X
W ,W )
125
C.B.Ü. Fen Bil. Dergisi (2006)123 128, 2006 /Erol YA AR
and
X ( g (Y , Z )) g (
V i g ( D L ( X ,W ), i )
(TM ). It follows that
for any X , Y
h s ( X , Y ) D s ( X , Y )W ,
L
X
Ni
D ( X , Ni )
s
X
i
W
D s ( X , Z ) g (W , Y )
m 1
W ,
(
Hence (2.3), (2.4) and (2.5) become
(2.10)
n
D s ( X , Y )W ,
g )(Y , Z )
and R the curvature tensor of
and
respectively. Then by straightforward
calculation and using (2.10), (2.11), (2.12),
(2.13), (2.14) and (2.15) we obtain
(2.17)
R( X , Y )Z
(2.11)
{D s ( X , Y ) AW Y
R( X , Y ) Z
m 1
m n
Ni
ANi X
n
Pij ( X ) N j
j 1
i
( X )W ,
m 1
m n
XW
AW X
( X )W
for any X , Y
(TM ). We call D the
screen second fundamental form of M with
respect to tr(TM). Both ANi and AW are
linear operators on (TM ) . We will see by
(2.15) that the first one is RadTM-valued,
called the shape operations of M. Since i
j
D )(Y , Z )W
X
are lightlike vector fields, from
(2.10)-(2.12) we obtain
(2.13)
X
W )
s
D ( X , Z )(
Y
W )
s
Y
D )( X , Z )W }
m
n
{D s (Y , Z )V i ( X ) N i
m 1
s
D s (Y , Z )(
s
(
n
V i ( X ) Ni
i 1
D s (Y , Z ) AW X
(
(2.12)
i 1
D s ( X , Z )V i (Y ) N i },
m 1
(2.18)
m
n
{R s ( X , Y )W
R ( X , Y )W
i 1
m 1
s
D (Y , AW X )W
D s ( X , AW Y )W
V i (Y )
V i (X )
(
i
( X )W
A)(W , X ) (
Y
X
i
(Y )W
A)(W , Y )
V i ( X ) ANi Y V i (Y ) ANi X
s
D ( X , i ) 0,
(
(2.14)
X
D L )(Y , W ) (
Y
D L )( X , W )},
(2.19)
D L ( X , i ) 0,
m
n
{R L ( X , Y ) N i
R( X , Y ) Ni
(2.15)
i 1
g ( ANi X , i )
g ( AW X , i ).
Further, taking in to account that
is a
metric connection and by using (2.10) we
obtain
0 ( X g)(Y, Z)
X(g(Y, Z)) g( XY, Z) g(Y,
X
Z)
i
(Y )V i ( X ) N i
i
(Y ) AW X
,
m 1
( X )V i (Y ) N i
i
(Y ) AW X
i
(
Y
A)( N i , X ) (
(
X
D s )(Y , N i ) (
X
A)( N i , Y )
Y
D s )( X , N i )
D s (Y , ANi X ) D s ( X , ANi Y )
for any X , Y , Z
126
(TM ) . Denote by R
n
m 1
and
X
for any X , Y , Z
D ( X ,W ) V i Ni .
X
Z)
m 1
W
XY
X
n
L
XY
Y , Z ) g (Y ,
D s ( X , Y ) g (W , Z )
Pij ( X ) N j ,
s
X
n
(TM ),
Yar - Riemann Manifoldunun Lightlike sotropik Altmanifoldu
W ,W
Ni
( S (TM ))
and
m
{D s ( X , AW Y )W
(ltr (TM )). Consider the Riemannian
curvature of type (0,4) of
and by using
(2.17)-(2.19) and the definition of curvature
tensor, we derive the following structure
equations :
(2.20)
m
n
i 1
m 1
R( X , Y , Z , Ni )
i
{g ( R ( X , Y ) Z , N i )
(Y ) D s ( X , Z )
i
( X ) D s (Y , Z )},
n
R s ( X , Y )W
i 1
m 1
s
D (Y , AW X )W
V i (X )
V i (Y )
(
(
Y
i
( X )W
X
(
Y
D L )(Y , W )},
(2.25)
m
n
{
i 1
(2.21)
m
n
i1
(Y )V i ( X ) N i
i
{g(( Y A)(W , X)
m1
(
V i (X)g(ANiY, Ni )},
(2.22)
m
n
R( X , Y , Ni , Ni ' )
{g ((
i 1
'
(
'
i
(Y )
i
A)( N i ' , X )
m 1
'
A)( N i , Y ), N i )
Y
X
i
(X )
i
(Y )
( X )}.
Theorem 2.3 Let M be lightlike isotropic
submanifold of an (2m+n)-dimensional semiRiemannian manifold of constant curvature
( M (c), g ), and of codimension (m+n). Then
the curvature tensor of M and M (c) related
to the following equations :
(2.23)
m
n
{D s (Y , Z ) AW X
R( X , Y ) Z
i 1
D s ( X , Z ) AW Y
m 1
D s ( X , Z )V i (Y ) N i
D s (Y , Z )V i ( X ) N i
D s (Y , Z )(
(
s
X
(
XW )
D )(Y , Z )W },
(2.24)
D s ( X , Z )(
Y
W )
s
Y D )( X , Z )W
i
( X )V i (Y ) N i
,
m 1
i
(Y ) AW X
( X ) AW Y
i
s
A)( N i , Y ) (
Y
A)( N i , X ) D ( X , ANi Y )
D (Y , ANi X )} (
Y
D s )( X , N i ) (
X
s
( X A)(W ,Y), Ni ) V i (Y)g(ANi X, Ni )
A)(W , Y )
D L )( X , W )
R L ( X , Y ) Ni
R(X,Y,W , Ni )
(Y )W
A)(W , X ) V i (Y ) ANi X
V i ( X ) ANi Y
(
X
i
X
D s )(Y , N i )
Proof. By using the definition of constant
curvature M (c) and (2.17), (2.18) and (2.19)
we obtain (2.23), (2.24) and (2.25).
Definition 2.4. A lightlike isotropic
submanifold (M,g) of a semi-Riemannian
manifold ( M , g ) is said to be totally
umbilical in M if there is a smooth vector
field H s such as
(2.26)
hs ( X ,Y )
H s g ( X , Y ), X , Y
(TM ).
Corollary
2.5.
Lightlike
isotropic
submanifold of ( M , g ) is totally geodesic if
M is totally umbilical , i.e.,
h s ( X , Y ) 0, X , Y
(TM ).
Then we have
Theorem 2.6. Let ( M , g ) be a isotropic
submanifold of ( M , g )
of codimension
(m+n) if M is totally umbilical in M then
(2.27)
R( X , Y )Z
R( X , Y ) Z , X , Y , Z
(TM ).
Proof. By using (2.17) and Corollary 2.3 we
get (2.27).
Corollary 2.7. Under the hypothesis of
theorem we have
127
C.B.Ü. Fen Bil. Dergisi (2006)123 128, 2006 /Erol YA AR
(2.28)
R ( X , Y )W
s
R ( X , Y )W
(
X
(
Y
A)(W , X )
A)(W , Y ),
(2.29)
R( X , Y ) Ni
(
Y
A)( N i , X ) (
X
A)( N i , Y ).
References
[1] Bejancu, A., Null Hypersurfaces in SemiEuclidean Space, Saitama Math. J. Vol. 14, 25-40,
(1996).
[2] Duggal, K., and Bejancu, A., Lightlike
Submanifold of Semi-Riemannian Manifold and
Applications, Kluver Academic Pub., (1996).
Geli Tarihi: 13/10/2005
128
[3] Duggal, K. and Jin, D.H., Half Lightlike
Submanifolds of Codimension 2, Math. J.
Toyama Uni., 22, 121-161, (1999)
[4] Duggal, K.L. and Bejancu A., Lightlike
Submanifold of Semi-Riemannian Manifold
Applications, Acta Appl. Math 38, 197-215,
(1995).
[5] K l ç, E., ahin, B., H.B. Karada , Güne , R.,
Coisotropic Submanifold of a Semi-Riemannian
Manifold, Turk J. Math., 28, 335-352, (2004).
[6] Katsuno, K., Null Hypersurfaces in Lorentzian
Manifolds I, Math. Proc. Camb. Phil. Soc. 88,
175-182, (1980).
[7] O Neill, B., Semi-Riemannian Geometry with
Applications to Relativity, Academic Press,
London, (1983).
Kabul Tarihi: 30/01/2006

Benzer belgeler

Özgeçmiş, Erhan Güler - Fen Fakültesi

Özgeçmiş, Erhan Güler - Fen Fakültesi Güler E., Yaylı Y. Generalized Bour’s theorem. Kuwait Journal of Science, 42-1 (2015) 79-90 (SCI Exp.). Güler E. A new kind of helicoidal surface of value m. International Electronic Journal of Geo...

Detaylı

general helices and bertrand curves in riemannian space form

general helices and bertrand curves in riemannian space form of the screen distribution and gave a necessary and sufficient condition on Ricci tensor of a coisotropic submanifold to be symmetric. In the present paper, we have proved that the connection induc...

Detaylı