APN mappings over GF(2,6)
Transkript
APN mappings over GF(2,6)
APN mappings over GF(2,6) Zülfükar Saygı TOBB ETU Haziran Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 1 / 27 subject of the talk A brief description of the classification of the APN cubics in 6 variables that is a joint work with Elif Saygı, Philippe Langevin. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 2 / 27 subject of the talk A brief description of the classification of the APN cubics in 6 variables that is a joint work with Elif Saygı, Philippe Langevin. The details of this 2011/12 computational project are available : langevin.univ-tln.fr/project This talk is presented by Philippe Langevin in YACC 12, September 24 – September 28, 2012, Porquerolles Island, France Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 2 / 27 definition m a positive integer, F2 finite field of order 2. m f : Fm 2 → F2 ( u Nf (u, v ) := # v Zülfükar Saygı (TOBB ETU) = x + y; = f (x) + f (y ). APN mappings over GF(2,6) Haziran 3 / 27 definition m a positive integer, F2 finite field of order 2. m f : Fm 2 → F2 ( u Nf (u, v ) := # v = x + y; = f (x) + f (y ). u 6= 0 =⇒ Nf (u, v ) = 0 or 2 [APN] almost perfect non-linear. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 3 / 27 cube map Fm 2 additive structure of F2m (q = 2m ) f : x 7→ x 3 = x 2 x Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 4 / 27 cube map Fm 2 additive structure of F2m (q = 2m ) f : x 7→ x 3 = x 2 x f (x + u) + f (x) = (x + u)3 + x 3 = ux 2 + u 2 x + u 3 Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 4 / 27 cube map Fm 2 additive structure of F2m (q = 2m ) f : x 7→ x 3 = x 2 x f (x + u) + f (x) = (x + u)3 + x 3 = ux 2 + u 2 x + u 3 As a vectorial function, the cube map is quadratic ! Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 4 / 27 affine equivalence Let A, B, C three affine transformations of Fm 2 . If A, B are permutations then f is APN ⇐⇒ A ◦ f ◦ B + C is APN notation : aff f ∼g same definition for (m, n) − mappings Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 5 / 27 flat characterization [APN] ( x +y +z +t =0 all distinct Zülfükar Saygı (TOBB ETU) =⇒ f (x) + f (y ) + f (z) + f (t) 6= 0 APN mappings over GF(2,6) Haziran 6 / 27 code characterization 1 ... 1 ... 1 ... 1 Hf = 0 . . . x f (0) . . . f (x) . . . f (1) [APN] the minimal distance of code(f ) is greater than 4. (The code is double-error-correcting (no fewer than 5 cols sum to 0).) Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 7 / 27 ccz-equivalence In particular, if code(f ) ∼ code(g ) then one denotes ccz f ∼g same definition for (m, n) − mappings Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 8 / 27 ccz-quadraticity There are some constructions of APN mappings, mainly : quadratic power mappings : Gold, Kasami, . . . In dimension 6, all of these are ccz-equivalent to a quadratic mapping ! ? Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 9 / 27 ccz-quadraticity [2009] Dillon discovered an APN permutation of F62 , it is ccz-quadratic. The only known example in even dimension. [2009] Edel and Pott discovered a nice cubic APN in dimension 6 wich is not ccz-quadratic. The only example in dimension 6. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 10 / 27 small dimensions All the APNs are known, for m= 1, 2, 3, 4, 5 : [m=4] 1 ccz-class, 2 affine class. [m=5] 3 ccz-class, 7 affine class. [2007] Brinkmann and Leander computed the ccz-classification of maps in dimension 5. two weeks of computation ! Our approach enable us to ccz-classify the APN maps in less than two hours. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 11 / 27 open numerical questions 12 + 1 + 1 ccz-class of APNs are known. APNs is a small set in a huge space . . . is it possible to ccz-classify of all APN in dimension 6 ? Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 12 / 27 open numerical questions 12 + 1 + 1 ccz-class of APNs are known. APNs is a small set in a huge space . . . is it possible to ccz-classify of all APN in dimension 6 ? It looks hard ! affine classification of all APN cubics in dimension 6 ? Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 12 / 27 open numerical questions 12 + 1 + 1 ccz-class of APNs are known. APNs is a small set in a huge space . . . is it possible to ccz-classify of all APN in dimension 6 ? It looks hard ! affine classification of all APN cubics in dimension 6 ? Indeed, it is feasible. We find a way that runs in about two months. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 12 / 27 ambient spaces dim Boolean cubics = 1 + 6 + 15 + 20 = 7 + 35 The space of vectorial cubics 42 ∗ 6 = 252 For APN, we do not care about linear terms 35 ∗ 6 = 210 In general, 4 components are enough 35 ∗ 4 = 140 Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 13 / 27 terminology An affine classification of the set of APNs is a set X such that ∀f ∈ apn(m), ∃!g ∈ X , aff g ∼ f. A covering at level n, is a set of (m, n)-maps Y such that : ∀f ∈ apn(m), ∃g ∈ Y , ∃h, aff (g , h) ∼ f . It is convenient to reduce covering sets ! We need to test affine equivalence of (m, n)-mappings. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 14 / 27 classification steps Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 15 / 27 Boolean cubics The first important step is to classify the Boolean cubics in dimension 6 under the action of the affine group agl(6) : 34 class dimension 35 We use computational algebra methods to keep in memory : representative orbit size fixator group Note that we plan to use about 32 Gb of shared memory Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 16 / 27 coordinate, component space n Consider (m, n)-mappings i.e. Fm 2 7→ F2 f = (f1 , f2 , . . . , fn ) where fi are Boolean functions. ∀λ ∈ Fn2 , def fλ = n X λi fi i=1 component space : vect(f ) = hf1 , f2 , . . . , fn i [APN] a m-space on which the “affine” characters are not trivial. f 7→ χ(f ) = µ(f (x) + f (y ) + f (z) + f (t)) Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 17 / 27 invariants invariant : [class(s) | s ∈ vect(f )]sorted representative : In order to construct a “canonical” representative, we select the type of cubic that appears in vect(f ) that minimizes ]fix(s). Then it is possible to deduce the smallest value of [vect(g )]sorted aff where r ∈ vect(g ) and g ∼ f . Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 18 / 27 Walsh coefficients Let f be a Boolean function. X X b f (a) = (−1)f (x)+a.x = (−1)f (x) µa (x) x∈Fm 2 Zülfükar Saygı (TOBB ETU) x∈Fm 2 APN mappings over GF(2,6) Haziran 19 / 27 Walsh coefficients Let f be a Boolean function. X X b f (a) = (−1)f (x)+a.x = (−1)f (x) µa (x) x∈Fm 2 Nf (u, v ) = x∈Fm 2 1 XXb 2 fλ (a) µa (u)µb (v ) 22m a∈Fm λ∈Fn 2 Zülfükar Saygı (TOBB ETU) 2 APN mappings over GF(2,6) Haziran 19 / 27 Walsh moment [APN] X fbλ (a)4 = 2q 3 (q − 1), (1) def b f (a)4 , L(bent) = q 3 , L(f ) = α(f )q 3 . X L(fλ ) = 2q 3 (q − 1), (2) a,06=λ∈Fm 2 L(f ) = P a∈Fm 2 06=λ∈Fm 2 It exists a component such that L(fλ ) ≤ 2q 3 , Zülfükar Saygı (TOBB ETU) i.e. α(fλ ) ≤ 2 APN mappings over GF(2,6) (3) Haziran 20 / 27 classification of Boolean cubics Type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ANF of Representative ace + bce + bde + bcf + adf ab + ace + bce + bde + bcf + adf ab + cd + ace + bce + bde + bcf + adf cde + abf ac + cde + abf bc + ad + cde + abf bd + ae + cde + abf + cf bcd + ace + abf ad + bcd + ace + abf ad + bcd + be + ace + abf bd + cd + bcd + ce + ace + abf bcd + ace + de + abf ad + bd + cd + bcd + be + ce + ace + abf + cf bcd + ace + de + abf + cf acd + abe bc + acd + abe cd + acd + abe Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) α 3, 8125 3, 0625 2, 3125 7, 5625 4, 5625 3, 0625 2, 3125 5, 5 4 2, 5 4 3, 25 1 2, 5 11, 5 5, 5 7 Haziran 21 / 27 classification of Boolean cubics Type 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ANF of Representative bd + cd + acd + abe + ce acd + abe + af bc + acd + abe + af cd + acd + abe + af bd + cd + acd + abe + ce + af acd + abe + bf acd + abe + ce + bf abc abc + ad abc + bd + ae abc + de abc + cd + be + af abc + de + af 0 ab bc + ad cd + be + af Zülfükar Saygı (TOBB ETU) α 4 8, 5 2, 5 4 1 4 2, 5 22 10 4 5, 5 1 2, 5 64 16 4 1 APN mappings over GF(2,6) Haziran 22 / 27 extension Given a candidate at level n, g = (g1 , g2 , . . . , gn , hn+1 , . . . , hm ) We denote by S = hg1 , g2 , . . . , gn i and V = hhn+1 , . . . , hm i X L(t, S) = L(h). 06=h∈t+S Assuming (g , h) is an APN-extension X L(t, S) = 2q 3 (q − 1), t∈V It exists t such that L(t, S) ≤ Zülfükar Saygı (TOBB ETU) 2q 3 − L(0, S) 2m−n − 1 APN mappings over GF(2,6) Haziran 23 / 27 extension It exists t s. t. L(t, S) ≤ 2q 3 − L(0, S) 2m−n − 1 (4) But, in fact : t + S contains a bent function ! For all g at level n, we select all the bent functions t satisfying (4). Indeed the set of bent functions is rather small. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 24 / 27 backtracking Given an (m, n)-mapping g . can we extend g as an APN ? Does there exist a (m, m − n)-mapping such that : g (x) + g (y ) + g (z) + g (t) = 0 =⇒ h(x) + h(y ) + h(z) + h(t) 6= 0? We use backtracking to solve it. It works well for (5, 3) and (6, 4) mappings. Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 25 / 27 dancing links Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 26 / 27 output At the end, we get 534 affine class of APN cubics 14 ccz-class Zülfükar Saygı (TOBB ETU) APN mappings over GF(2,6) Haziran 27 / 27
Benzer belgeler
Read More - Palmarina Bodrum
the demands the best and the quickest way possible; the technical substructure, the details of which are meticulously run over; prudent security, cleanliness, maintenance; lots of food&beverage and...
Detaylıread detailed cover letters. - Mechanical Engineering
8. AKÇALI, İ.D. “Özel Redüktör Tasarımı”, FBE-94-97, Adana 1995 9. AKÇALI, İ.D. “Düzlemde İki ve Üç Serbestlik Dereceli Robotların analiz Tasarım ve Uygulamaları”, FBE95.53, Adana 1996 10. AKÇALI, ...
DetaylıPROF. DR. İBRAHİM DENİZ AKÇALI YAZIŞMA
8. AKÇALI, İ.D. “Özel Redüktör Tasarımı”, FBE-94-97, Adana 1995 9. AKÇALI, İ.D. “Düzlemde İki ve Üç Serbestlik Dereceli Robotların analiz Tasarım ve Uygulamaları”, FBE95.53, Adana 1996 10. AKÇALI,...
Detaylı