APN mappings over GF(2,6)

Transkript

APN mappings over GF(2,6)
APN mappings over GF(2,6)
Zülfükar Saygı
TOBB ETU
 Haziran 
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
1 / 27
subject of the talk
A brief description of the classification of the APN cubics in 6
variables that is a joint work with
Elif Saygı,
Philippe Langevin.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
2 / 27
subject of the talk
A brief description of the classification of the APN cubics in 6
variables that is a joint work with
Elif Saygı,
Philippe Langevin.
The details of this 2011/12 computational project are available :
langevin.univ-tln.fr/project
This talk is presented by Philippe Langevin in YACC 12,
September 24 – September 28, 2012, Porquerolles Island, France
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
2 / 27
definition
m a positive integer,
F2 finite field of order 2.
m
f : Fm
2 → F2
(
u
Nf (u, v ) := #
v
Zülfükar Saygı (TOBB ETU)
= x + y;
= f (x) + f (y ).
APN mappings over GF(2,6)
 Haziran 
3 / 27
definition
m a positive integer,
F2 finite field of order 2.
m
f : Fm
2 → F2
(
u
Nf (u, v ) := #
v
= x + y;
= f (x) + f (y ).
u 6= 0 =⇒ Nf (u, v ) = 0 or 2
[APN] almost perfect non-linear.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
3 / 27
cube map
Fm
2 additive structure of F2m
(q = 2m )
f : x 7→ x 3 = x 2 x
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
4 / 27
cube map
Fm
2 additive structure of F2m
(q = 2m )
f : x 7→ x 3 = x 2 x
f (x + u) + f (x) = (x + u)3 + x 3
= ux 2 + u 2 x + u 3
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
4 / 27
cube map
Fm
2 additive structure of F2m
(q = 2m )
f : x 7→ x 3 = x 2 x
f (x + u) + f (x) = (x + u)3 + x 3
= ux 2 + u 2 x + u 3
As a vectorial function, the cube map is quadratic !
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
4 / 27
affine equivalence
Let A, B, C three affine transformations of Fm
2 . If A, B are
permutations then
f is APN ⇐⇒ A ◦ f ◦ B + C is APN
notation :
aff
f ∼g
same definition for (m, n) − mappings
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
5 / 27
flat characterization
[APN]
(
x +y +z +t =0
all distinct
Zülfükar Saygı (TOBB ETU)
=⇒ f (x) + f (y ) + f (z) + f (t) 6= 0
APN mappings over GF(2,6)
 Haziran 
6 / 27
code characterization


1 ... 1 ... 1
... 1 
Hf =  0 . . . x
f (0) . . . f (x) . . . f (1)
[APN] the minimal distance of code(f ) is greater than 4.
(The code is double-error-correcting (no fewer than 5 cols sum to 0).)
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
7 / 27
ccz-equivalence
In particular, if
code(f ) ∼ code(g )
then one denotes
ccz
f ∼g
same definition for (m, n) − mappings
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
8 / 27
ccz-quadraticity
There are some constructions of APN mappings, mainly :
quadratic
power mappings : Gold, Kasami, . . .
In dimension 6, all of these are ccz-equivalent to a quadratic
mapping ! ?
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
9 / 27
ccz-quadraticity
[2009] Dillon discovered an APN permutation of F62 , it is
ccz-quadratic.
The only known example in even dimension.
[2009] Edel and Pott discovered a nice cubic APN in dimension 6
wich is not ccz-quadratic.
The only example in dimension 6.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
10 / 27
small dimensions
All the APNs are known, for m= 1, 2, 3, 4, 5 :
[m=4] 1 ccz-class, 2 affine class.
[m=5] 3 ccz-class, 7 affine class.
[2007] Brinkmann and Leander computed the ccz-classification of
maps in dimension 5.
two weeks of computation !
Our approach enable us to ccz-classify the APN maps in less
than two hours.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
11 / 27
open numerical questions
12 + 1 + 1 ccz-class of APNs are known.
APNs is a small set in a huge space . . .
is it possible to ccz-classify of all APN in dimension 6 ?
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
12 / 27
open numerical questions
12 + 1 + 1 ccz-class of APNs are known.
APNs is a small set in a huge space . . .
is it possible to ccz-classify of all APN in dimension 6 ?
It looks hard !
affine classification of all APN cubics in dimension 6 ?
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
12 / 27
open numerical questions
12 + 1 + 1 ccz-class of APNs are known.
APNs is a small set in a huge space . . .
is it possible to ccz-classify of all APN in dimension 6 ?
It looks hard !
affine classification of all APN cubics in dimension 6 ?
Indeed, it is feasible. We find a way that runs in about two months.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
12 / 27
ambient spaces
dim Boolean cubics = 1 + 6 + 15 + 20 = 7 + 35
The space of vectorial cubics
42 ∗ 6 = 252
For APN, we do not care about linear terms
35 ∗ 6 = 210
In general, 4 components are enough
35 ∗ 4 = 140
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
13 / 27
terminology
An affine classification of the set of APNs is a set X such that
∀f ∈ apn(m),
∃!g ∈ X ,
aff
g ∼ f.
A covering at level n, is a set of (m, n)-maps Y such that :
∀f ∈ apn(m),
∃g ∈ Y ,
∃h,
aff
(g , h) ∼ f .
It is convenient to reduce covering sets ! We need to test affine
equivalence of (m, n)-mappings.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
14 / 27
classification steps
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
15 / 27
Boolean cubics
The first important step is to classify the Boolean cubics in
dimension 6 under the action of the affine group agl(6) :
34 class
dimension 35
We use computational algebra methods to keep in memory :
representative
orbit size
fixator group
Note that we plan to use about 32 Gb of shared memory
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
16 / 27
coordinate, component space
n
Consider (m, n)-mappings i.e. Fm
2 7→ F2
f = (f1 , f2 , . . . , fn )
where fi are Boolean functions.
∀λ ∈ Fn2 ,
def
fλ =
n
X
λi fi
i=1
component space :
vect(f ) = hf1 , f2 , . . . , fn i
[APN] a m-space on which the “affine” characters are not trivial.
f 7→ χ(f ) = µ(f (x) + f (y ) + f (z) + f (t))
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
17 / 27
invariants
invariant :
[class(s) | s ∈ vect(f )]sorted
representative :
In order to construct a “canonical” representative, we select the type
of cubic that appears in vect(f ) that minimizes ]fix(s).
Then it is possible to deduce the smallest value of
[vect(g )]sorted
aff
where r ∈ vect(g ) and g ∼ f .
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
18 / 27
Walsh coefficients
Let f be a Boolean function.
X
X
b
f (a) =
(−1)f (x)+a.x =
(−1)f (x) µa (x)
x∈Fm
2
Zülfükar Saygı (TOBB ETU)
x∈Fm
2
APN mappings over GF(2,6)
 Haziran 
19 / 27
Walsh coefficients
Let f be a Boolean function.
X
X
b
f (a) =
(−1)f (x)+a.x =
(−1)f (x) µa (x)
x∈Fm
2
Nf (u, v ) =
x∈Fm
2
1 XXb 2
fλ (a) µa (u)µb (v )
22m a∈Fm λ∈Fn
2
Zülfükar Saygı (TOBB ETU)
2
APN mappings over GF(2,6)
 Haziran 
19 / 27
Walsh moment
[APN]
X
fbλ (a)4 = 2q 3 (q − 1),
(1)
def
b
f (a)4 , L(bent) = q 3 , L(f ) = α(f )q 3 .
X
L(fλ ) = 2q 3 (q − 1),
(2)
a,06=λ∈Fm
2
L(f ) =
P
a∈Fm
2
06=λ∈Fm
2
It exists a component such that
L(fλ ) ≤ 2q 3 ,
Zülfükar Saygı (TOBB ETU)
i.e. α(fλ ) ≤ 2
APN mappings over GF(2,6)
(3)
 Haziran 
20 / 27
classification of Boolean cubics
Type
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
ANF of Representative
ace + bce + bde + bcf + adf
ab + ace + bce + bde + bcf + adf
ab + cd + ace + bce + bde + bcf + adf
cde + abf
ac + cde + abf
bc + ad + cde + abf
bd + ae + cde + abf + cf
bcd + ace + abf
ad + bcd + ace + abf
ad + bcd + be + ace + abf
bd + cd + bcd + ce + ace + abf
bcd + ace + de + abf
ad + bd + cd + bcd + be + ce + ace + abf + cf
bcd + ace + de + abf + cf
acd + abe
bc + acd + abe
cd + acd + abe
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
α
3, 8125
3, 0625
2, 3125
7, 5625
4, 5625
3, 0625
2, 3125
5, 5
4
2, 5
4
3, 25
1
2, 5
11, 5
5, 5
7
 Haziran 
21 / 27
classification of Boolean cubics
Type
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
ANF of Representative
bd + cd + acd + abe + ce
acd + abe + af
bc + acd + abe + af
cd + acd + abe + af
bd + cd + acd + abe + ce + af
acd + abe + bf
acd + abe + ce + bf
abc
abc + ad
abc + bd + ae
abc + de
abc + cd + be + af
abc + de + af
0
ab
bc + ad
cd + be + af
Zülfükar Saygı (TOBB ETU)
α
4
8, 5
2, 5
4
1
4
2, 5
22
10
4
5, 5
1
2, 5
64
16
4
1
APN mappings over GF(2,6)
 Haziran 
22 / 27
extension
Given a candidate at level n,
g = (g1 , g2 , . . . , gn , hn+1 , . . . , hm )
We denote by S = hg1 , g2 , . . . , gn i and V = hhn+1 , . . . , hm i
X
L(t, S) =
L(h).
06=h∈t+S
Assuming (g , h) is an APN-extension
X
L(t, S) = 2q 3 (q − 1),
t∈V
It exists t such that
L(t, S) ≤
Zülfükar Saygı (TOBB ETU)
2q 3 − L(0, S)
2m−n − 1
APN mappings over GF(2,6)
 Haziran 
23 / 27
extension
It exists t s. t.
L(t, S) ≤
2q 3 − L(0, S)
2m−n − 1
(4)
But, in fact :
t + S contains a bent function !
For all g at level n, we select all the bent functions t satisfying (4).
Indeed the set of bent functions is rather small.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
24 / 27
backtracking
Given an (m, n)-mapping g .
can we extend g as an APN ?
Does there exist a (m, m − n)-mapping such that :
g (x) + g (y ) + g (z) + g (t) = 0 =⇒ h(x) + h(y ) + h(z) + h(t) 6= 0?
We use backtracking to solve it.
It works well for (5, 3) and (6, 4) mappings.
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
25 / 27
dancing links
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
26 / 27
output
At the end, we get
534 affine class of APN cubics
14 ccz-class
Zülfükar Saygı (TOBB ETU)
APN mappings over GF(2,6)
 Haziran 
27 / 27

Benzer belgeler

Read More - Palmarina Bodrum

Read More - Palmarina Bodrum the demands the best and the quickest way possible; the technical substructure, the details of which are meticulously run over; prudent security, cleanliness, maintenance; lots of food&beverage and...

Detaylı

read detailed cover letters. - Mechanical Engineering

read detailed cover letters. - Mechanical Engineering 8. AKÇALI, İ.D. “Özel Redüktör Tasarımı”, FBE-94-97, Adana 1995 9. AKÇALI, İ.D. “Düzlemde İki ve Üç Serbestlik Dereceli Robotların analiz Tasarım ve Uygulamaları”, FBE95.53, Adana 1996 10. AKÇALI, ...

Detaylı

PROF. DR. İBRAHİM DENİZ AKÇALI YAZIŞMA

PROF. DR. İBRAHİM DENİZ AKÇALI YAZIŞMA 8. AKÇALI, İ.D. “Özel Redüktör Tasarımı”, FBE-94-97, Adana 1995 9. AKÇALI, İ.D. “Düzlemde İki ve Üç Serbestlik Dereceli Robotların analiz Tasarım ve Uygulamaları”, FBE95.53, Adana 1996 10. AKÇALI,...

Detaylı