Open Channel Hydraulics

Transkript

Open Channel Hydraulics
CE 642
HYDRAULICS
Dr. Emre Can
1
HYDRAULICS
Tentative Course Outline
Introduction
Pipe Flow
Open Channel Flows
Uniform Flow
Non-Uniform Flow
Local Changes in Water Levels
Channel Controls
Sedimentation in Open Channels and Rivers
Dimensional Analysis & Theory of Models
EXAM SCHEDULE
31 March
12 May
15:00
15:00
Midterm exam 1
Midterm exam 2
The exams will always be closed book,
(however formula sheets will be provided)
Questions will be in English and there will be no
translation of questions into Turkish,
Answers to all the questions should be in English.
HYDRAULICS
REFERENCES:
Chow, V.T., Open Channel Hydraulics, , Mc Graw Hill,
New York, 1959.
Henderson, F.M., Open Channel Flow, Macmillan Co, 1966.
Vennard, J.K. & Street, R.L., Elementary Fluid Mechanics,
John Wiley & Sons, 1977.
Linsley, R.K. & Franzini, J.B., Water Resources Engineering,
McGraw Hill, Newyork, 1972
HYDRAULICS
REFERENCES:
Sümer, B.M, Ünsal, İ. & Bayazıt M. Hidrolik,
Birsen yayınevi
Yanmaz, A. Melih, Applied Water Resources
Engineering, Metu Press, 3rd edition, 2006
CE 372 Hydromechanics Lecture Notes, Middle
East Technical University, Civil Engineering Department
UTAH STATE UNIVERSITY Open Courseware
http://ocw.usu.edu/Civil_and_Environmental_Engineering/Fluid_Mechanics
Scope of the Course
In many water systems, transportation of
water from one location to another is the
main concern.
Two main modes of transportation are:
Closed conduits with pressurized flow inside
Open conduits with free surface flow inside
The main objective in this course is to study
the flow in closed conduits (mainly pipes)
and in open channels
Examples include:
Water distribution networks in urban areas
Water transmission line from Çamlıdere Dam to
İvedik Water Treatment Plant
(φ
φ = 3.4 m, L = 15.5 km)
Urfa Tunnels from Atatürk Dam to Harran Plain
(φ
φ = 7.62 m, L = 2 x 26.4 km)
Main irrigation canal in Harran Plain
(L=118 km, Q = 80 m3/s)
The View of Atatürk Dam
GAP WATER RESOURCES ROJECTS
Total 22 dams, 19 HPP
1.7 million ha, 7485 MW, 27 billion kWh
Urfa Tunnels from
Atatürk Dam to Harran Plain
φ = 7.62 m,
L = 2 x 26.4 km
Q=80 m3/s
Main irrigation canal in Harran Plain
(L=118 km, Q = 80 m3/s)
Before 1995
HARRAN PLAIN
YEŞİLÇAY SYSTEM
AĞVA
BLACKSEA
YEŞİLÇAY REG.
KABAKOZ
DAM
DARLIK
DAM
İSAKÖY
DAM
SUNGURLU
DAM
ÖMERLİ
DAM
EMİRLİ TREATMENT
STORAGE
M A R M A R A SEA
YEŞİLÇAY SYSTEM CHARACTERISTICS
Length of transmission lines: 723 712 m
Length of water Network
:
11 738 km
Volume of water reservoir
: 914 000 m3
Water Supplied (2003)
: 920 million m3/year
Water treatment capacity
: 3.5 million m3/day
Ø3 000 mm Prestressed Concrete Cylinder Pipes
GREATER
GREATER MELEN
MELEN PROJECT
PROJECT
OF
OF ISTANBUL
ISTANBUL
BLACKSEA
Hüseyinli
HüseyinliSu
Su
Cumhuriyet
Cumhuriyet Arıtma
Tesisi
Arıtma
Tesisi
Pompa
Pompa
700
700000
000m³/gün
m³/gün
İstasyonu
İstasyonu
Boğaz
Boğaz
Tüneli
Tüneli
5.5
5.5km
km
Osmankuyu
Osmankuyu
Su
Sudeposu
deposu
Ayazağa
Ayazağa
Tüneli
Tüneli
2.8
2.8km
km
Melen
Melen
Pompa
Pompa
İstasyonu
İstasyonu
Şile-Alaçalı
Şile-Alaçalı
Tünel
Tünel
3.5
3.5km
km
Melen
Melen
Regülatörü
Regülatörü
3
8.5
8.5m
m3/s/s
Bekleme
Bekleme
Tüneli
Tüneli
1.3
1.3km
km
Beykoz
Beykoz
Tüneli
Tüneli
2.6
2.6km
km
Ortaçeşme
Ortaçeşme
Tüneli
Tüneli
0.8
0.8km
km
Alaçalı
Alaçalı
Barajı
Barajı
Hamidiye
Hamidiye
Tüneli
Tüneli5.2
5.2
km
km
Ömerli
ÖmerliBarajı
Barajı
(mevcut)
(mevcut)
Melen-Alaçalı
Melen-Alaçalı
İsale
İsaleHattı
Hattı
131
131km
km
Alaçalı-Ömerli
Alaçalı-Ömerli
Hattı
Hattı
Boğaz
BoğazTüneli
Tüneli
Profili
Profili
MARMARA SEA
Boğaz
Boğaz
Tüneli
Tüneli
Boğaz
BoğazTüneli
Tüneli
Ø=4.0-3.6
Ø=4.0-3.6m
m
L=5.5
L=5.5km
km
Melen
MelenBarajı
Barajı
(ileri
(ileriaşama)
aşama)
Great Melen Project Technical Specifications
System Length
: 185 600 m
Ø 2 500 mm Steel Pipe
Ø 4 500 mm tunnel length
Ø 4 000 mm tunnel length
Ø 3 600 mm tunnel length
: 163 950 m
: 8 700 m
: 11 550 m
: 1 400 m
Examples of Fluid Mechanics System
Physical Properties of Fluids
Density
Specific
weight
Specific Gravity
Specific Volume
Viscosity
Surface Tension
Vapor Pressure
Compressibility
Density, ρ
Mass
per unit volume
ρ = m/∀
[ρ]=ML-3
Specific Weight, γ:
Weight
per unit volume
γ = W/∀
[γ]=FL-3
γ = ρg
Specific Gravity, SG
The
ratio of the density of the fluid to the
density of water (or air) at standard
conditions
(SG )liquid
ρ
=
ρw
(SG )gas
ρ
=
ρair
Density and Specific Weights of
some fluids
(g=9.81m/s2)
Gases
Liquids
Fluid
G
as
es
Temperature
°C
Density
kg/m3
Specific Weight
N/m3
Water
4.0
1000.
9810.
Mercury
20.0
13600.
133416.
Gasoline
15.6
680.
6671.
Alcohol
20.0
789.
7740.
Air
15.0
1.23
12.0
Oxygen
20.0
1.33
13.0
Hydrogen
20.0
0.0838
0.822
Methane
20.0
0.667
6.54
Deformation of fluid for a short time interval ∆t
hF
Up ∝
= hτ
A
τ∝
Up
h
dθ
τ∝
dt
Up
∆S
B
h
τ
B’
∆θ
F
u(y)
y
A
Shear stress is
proportional to the rate
of angular deformation
x
Newton’s Law of Viscosity
For the linear velocity profile
du U p dθ
=
=
dy h
dt
Up
u ( y) =
y
h
du
τ=µ
dy
Up
u ( y)
=
h
y
du
τ∝
dy
Newton’s
Law of
viscosity
The proportionality constant µ is known as
dynamic viscosity of the fluid.
Dynamic and Kinematic Viscosity
µ
ν=
ρ
Viscosity can be made independent
of fluid density; kinematic viscosity
is defined as the ratio
µ Dynamic Viscosity :
ν Kinematic Viscosity :
N⋅⋅s/m2 N (Mass/Length/Time)
(m2/s) (Length2/Time)
Viscosities of air and water
Fluid
Temperature
(°°C)
µ
(N⋅⋅s/m2)
ν
(m2/s)
Water
20
1.00E-03
1.01E-06
Air
20
1.80E-05
1.51E-05
Reynolds Experiment
Dye
D
pipe
Q=VA
Smooth well-rounded entrance
Dye streak
Characteristics of Turbulent Flow
Velocity components in a turbulent pipe flow: (a) x-component
velocity; (b) r-component velocity; (c) θ-component velocity.
Type of Flow
Re…Dimensionless
number
f( velocity, diameter, viscosity)
VD 4 Q
Re =
=
ν πD ν
Laminar
flow:
Re < 2000
Transitional flow: 2000 < Re < 4000
Turbulent flow:
Re > 4000

Benzer belgeler

zonguldak - Bülent Ecevit Üniversitesi

zonguldak - Bülent Ecevit Üniversitesi DOĞANCILAR KÖYÜ ORTA ÖĞRETİM ERKEK ÖĞRENCİ YURDU

Detaylı

Su Kaynakları

Su Kaynakları Introduction to operation research. Optimization techniques such as linear programming, dynamic programming, and non-linear programming. Application in water quality, air quality and waste manageme...

Detaylı