Halkalı Sayaçlar

Transkript

Halkalı Sayaçlar
Halkalı Sayaçlar
Bir kaydıran yazmacın çıkışı girişine verilirse halkalı sayaçlar oluşur. Sayaçtaki veri deseni saat
darbeleri uygulandığı sürece dolanacaktır. Mesela aşağıdaki şekilde veri deseni kendini her dört
saat darbesinde tekrar edecektir. Fakat bir veri deseni yüklememiz gerekir. Bütün 0 lar ve bütün 1
ler sayılmaz. Böyle bir durumdaki devamlı mantık seviyesi kullanışlımıdır?
Aşağıda halkalı sayaç olarak biçimlendirilmiş paralel-giriş/seri-çıkışı olan bir kaydıran yazmaca veri
yüklemesi için gerekli hazırlığı yaparız. Rasgele herhangi bir desen yüklenebilir. En çok kullanışlı
olan desen tek bir 1 dir.
Yukarıdaki halkalı sayaca ikili 1000 ı kaydırmadan önce yüklemek görünebilir bir desen oluşturur.
Tek bir basamaktaki veri deseni bizim dört basamaklı örneğimizde her dört saat darbesinde kendini
tekrar eder. Her dört basamak için dalga formları aynı görünür sadece bir basamaktan diğerine bir
saat zaman gecikmesi haricinde. Aşağıdaki şekle bakınız.
Yukarıdaki devre 4 e bölme sayacıdır. Saat girişini çıkışlardan herhangi biri ile karşılaştırırsan 4:1
oranında bir frekans elde ederiz. 10 a böle halkalı sayacı için kaç basamağa ihtiyacımız vardır? On
basamak her 10 saat darbesinde 1 i çevirir.
Yukarıda halkalı sayacı 1000 durumuna getirecek alternatif bir metot gösterilmiştir. Kayan dalga
formları yukarıdaki ile aynıdır ve her dört saat darbesinde kendini tekrar eder. Sıfırlama ihtiyacı bir
halkalı sayacın diğer sıradan sayaçlara göre bir dezavantajıdır. En azından başlama esnasında
sıfırlanmış olması gerekir çünkü flip-flop ların başlangıçta hangi durumda olacağını tahmin etmenin
bir yolu yoktur. Teoride tekrar sıfırlama gerekmez. Gerçek uygulamada flip-flop lar gürültü ile veri
desenini bozabilir. Sıradan eşzamanlı ikili sayaç benzeri bir "kendinden düzeltmeli" sayaç daha
güvenli olur.
Yukarıdaki ikili eşzamanlı sayaç sadece iki kademeye ihtiyaç duyar fakat çözücü kapılar gerektirir.
Halkalı sayaçta daha fazla basamak var fakat kendisi çözdüğü için yukarıdaki çözücü kapılara
ihtiyaç kalmaz. Halkalı sayaçların bir diğer dezavantajı da "kendi kendine başlatılamamalarıdır".
Eğer çözülmüş çıkışlara ihtiyacımız olursa halkalı sayaç daha kullanışlıdır, özellikle mantığın çoğu
tek bir kaydıran yazmaç paketinin içinde ise. Eğer değilse sıradan ikili sayaç çözücüsü olmadığı için
daha basittir.
Eşzamanlı ikili sayaçtan çözülen dalga formları az önceki halkalı sayaç dalga formları ile benzerdir.
Sayaç düzeni (QA QB) = (00 01 10 11) dir.
Johnson sayaçları
Johnson sayacı olarak da bilinen anahtar-kuyruklu halka sayacı halkalı sayacın bir takım
sınırlamalarının üstesinden gelir. Bir halkalı sayaç gibi Johnson sayacı da kendi üzerine beslenen bir
kaydıran sayaçtır. Verilen bir bölme oranı için halkalı sayacın yarısı kadar basamağa ihtiyaç duyar.
Eğer bir halkalı sayacın tümleyen çıkışı gerçek çıkış yerine girişe geri beslenirse bir Johnson sayacı
elde edilir. Bir halkalı sayaç ile Johnson sayacı arasındaki fark son basamağın hangi çıkışının geri
beslendiğidir (Q veya Q'). Aşağıdaki geri besleme bağlantısıyla daha önceki halkalı sayacı dikkatlice
karşılaştırın.
Bu "ters çevrilmiş" geri besleme bağlantısı normalde birbirine benzeyen bu devreler üzerinde çok
derin bir etkiye sahiptir. Bir halkalı sayacının etrafında tek bir 1 i döndürmek giriş saatini aşama
sayısına böler. Fakat bir Johnson sayacı aşama sayısının iki katına böler. Mesela 4-aşamalı bir
halkalı sayaç 4 e böler. 4-aşamalı bir Johnson sayacı 8 e böler.
Bir Johnson sayacına ilk saatten önce tüm aşamaları temizleyip 0 a eşitleyerek başlayın. Bu
genellikle başlatma zamanında yapılır. Aşağıdaki şekle bakarsak ilk saat ( QA QB QC) den üç tane 0
ı ( QB QC QD) ye gönderir. QD' (Q nun tümleyeni) deki 1 QA ya geri gönderilir. Böylece 1 leri sağa
kaydırmaya 0 ları yerine yerleştirmeye başlarız. Halkalı bir sayaç tek bir 1 döndürürken 4-aşamalı
Johnson sayacı 8-bitlik bir desen için dört tane 0 ve dört tane 1 döndürür ve sonra kendini tekrar
eder.
Yukarıdaki dalga formu çok-fazlı kare dalgaların Johnson sayaçları tarafından oluşturulduğunu
gösterir. Yukarıdaki 4-basamaklı ünite bir iş döngüsünün %50 sinde üst üste binmiş dört faz üretir.
Üç fazlı dalga formu kümesi üretmek için kaç aşama gerekir? Örneğin, üç aşamalı bir Johnson
sayacı 360 Hertz lik bir saat ile beslenirse 60 Hertz de üç tane 120o fazda kare dalgası üretir.
Bir Johnson sayacındaki flip-flop çıkışlarının tek bir duruma çözülmesi kolaydır. Aşağıda 4-aşamalı
bir Johnson sayacının sekiz durumu her bir durum için en fazla iki giriş geçidi ile çözülmüştür. Bizim
Johnson sayacımızda sekiz giriş geçidinden ikisi durumları çözer.
Johnson sayacı ne kadar uzun olursa olsun sadece 2-girişli çözücü geçit gerekir. FF (Q dan Q' ya
veya tersine) lerdeki geçit girişlerini doğrudan tersine değiştirerek AND geçitlerine evirilmemiş
girişleri kullanabilirdik. Fakat pratikte yukarıdaki diyagramın CD4022B nin veri tablosuna mümkün
olduğunca uyması için uğraşıyoruz.
Yukarıda QA dan QD olan dört fazlı kare dalgalarımız G0 dan G7 ye sekiz sinyale çözülür, bu
sinyaller bütün 8-saat döngüsü içinde bir saat zamanında aktiftir. Örneğin G0 hem QA hem de QD
düşükken aktiftir. Böylece çeşitli yazmaç çıkış çiftleri Johnson sayacı örneğimizdeki sekiz durumdan
her birini tanımlar.
Yukarıda CD4022B Johnson sayacının tam bir dahili diyagramı vardır. İhmal edilen küçük noktalar
için üreticinin veri tablosuna bakınız. Daha önceki şekillerde bu diyagrama yapılan yeni eklenti iki
NOR geçidinden oluşan izin verilmemiş durum algılayıcısı dır. Şekil içindeki durum tablosuna
bakınız. Tabloda listelendiği gibi 8-izinli durum vardır. Bizim kaydıranımızın dört flip-flop u vardır
toplamda 16-durum vardır, bunlardan 8 tanesi izin verilmemiş durumlardır. Bunlar tabloda
gösterilmemiş olan durumlardır.
Teoride ilk kullanımdan önce kaydıran yazmaç RESET edildiyse bu izin verilmemiş durumlarla
karşılaşmayız. Fakat "gerçek hayatta" günlerce süren devamlı kullanım sonucunda gürültü, güç
hattındaki dalgalanmalar, yakınlara yıldırım düşmesi gibi sebeplerle Johnson sayacı bu izin
verilmeyen durumlardan birine girebilir. Yüksek kararlılık gerektiren uygulamalarda bu küçük
ihtimali de göz önünde bulundurup planlarımızı buna göre yapmalıyız. Daha önemli bir durum ise
başlatma esnasında devrenin temizlenmemiş olmalısıdır. Bu durumda devrenin 16-durumdan
hangisi ile başlayacağını bilmemizin bir yolu yoktur. Bu izin verilmeyen durumlardan birine girerse
Johnson sayacının dışarıdan müdahale olmaksızın tekrar izin verilen durumlara dönmesi mümkün
değildir. NOR geçitlerinin amacı budur.
(QA QB QC) = (010) düzeni için oluşturulmuş tabloyu inceleyin. İzin verilen durumların tablosunda
bu düzen hiç bir yerde gözükmez. Bu yüzden (010) izin verilmemiş durumdur. Hiçbir zaman
meydana gelmemelidir. Eğer meydana gelirse Johnson sayacı izin verilmemiş bir durumda demektir
ve izin verilen durumlardan birine çıkması gerekir. (QA QB QC) = (010) olduğunu varsayalım. İkinci
NOR geçidi FF QC nin D girişindeki QB = 1 i 0 la değiştirir. Başka bir ifadeyle problemli 010
durumu 000 la değiştirilmiş olur ve tabloda görünen 000 sağa doğru kayar. Tabloda üç-0 lı bir çok
dizi var. Bu şekilde NOR geçitleri Johnson sayaçlarını izin verilmeyen durumlardan izin verilen
duruma geçirir.
Bütün izin verilmeyen durumlar 010 dizisi içermezler. Fakat birkaç saat zamanı sonra bu dizi
ortaya çıkar ve diğer izin verilmeyen durumlardan kaçınılmış olur. Eğer devre RESET lenmeden
başlatılırsa çıkışlar geçerli bir duruma ulaşana kadar birkaç saat zamanı boyunca tahmin edilemez
olur. Eğer bu belirli bir uygulama için bir sorun oluşturacak ise açmadan önce RESET yapın.
Johnson sayaç cihazları
Çıkış durumları çözülmüş olarak entegre devre halinde Johnson sayacı cihazları bulunabilir. Johnson
sayaçlarıyla ilgili CD4017 dahili mantığını daha önce görmüştük. 4000 seri cihazlar 3V ila 15V
arasındaki güç kaynakları ile çalışabilir. 74HC' parçası TTL uyumlu olarak tasarlanmıştır 2V dan 6V a
kadar kaynakla çalışabilir, daha hızlı sayar ve daha çok çıkış besleme yeteneği vardır. Cihazın tam
bir veri tablosu için aşağıdaki bağlantıları izleyiniz.
•
CD4017 10 çözülmüş çıkışlı Johnson sayacı, CD4022 8 çözülmüş çıkışlı Johnson sayacı [*]
•
74HC4017 10 çözülmüş çıkışlı Johnson sayacı [*]
Yukarıda modulo-10 (10 a bölme) ve modulo-8 Johnson sayaçları için ANSI sembolleri
gösterilmiştir. Sembol bir kaydıran yazmaçtan ziyade bir sayaç karakteristiği taşır çünkü zaten bir
sayaçtır. CD4022 modulo-8 in dalga formları ve çalışması daha önce gösterilmişti. CD4017B/
74HC4017 onlu sayacı 5-basamaklı ve on çözücü çıkışlı bir Johnson sayacıdır. Çalışması ve dalga
formları CD4017 ye benzerdir. Gerçekte CD4017 ve CD4022 aynı veri tablosunda gösterilmiştir,
yukarıdaki bağlantılara bakınız. 74HC4017 onlu sayaçların daha modern bir sürümüdür.
Bu cihazlar normal sayaçlarda bulunan ikili veya BCD (İkili Kodlanmış Onlu (Binary Coded
Decimal)) çıkış yerine çözülmüş çıkış gerekli olan yerlerde kullanılır. Çözülmüş ile, sıradan
sayaçlardaki dört bitlik BCD kodu yerine 4017 de bir anda on hattan birinin aktif olmasını
kastediyoruz. 4022 Sekizli Johnson sayacı için 8-e-1 çözümlemeyi gösteren dalga formlarına
bakınız.
Pratik uygulamalar
Yukarıdaki Johnson sayacı yanan bir LEDi on saniyelik bir döngünün her beş saniyesinde kaydırır.
Burada 40017 yerine 74HC4017 kullanılmıştır çünkü 74HC4017 nin daha fazla akım sürme yeteneği
vardır. Yukarıda bağlantıda verilen veri tablosundan VCC= 5V ve 4mA de VOH= 4,6V olduğu görülür.
Diğer bir deyişle çıkışlar LED leri beslemek için 4,6 V da 4 mA verebilir. Normalde LED lerin 10 ila
20 mA arası akımla çalıştığını akılda bulundurun. Buna rağmen 1 mA e kadar görülebilir. Bu basit
devre HC4017 nin bir uygulamasını gösterir. Bir sergi için parlak bir ışığa mı ihtiyacınız var? Öyle
ise LED lerin katotlarını beslemek için düşük değerli anot dirençleri tarafından güç kaynağı
seviyesine yükseltilmiş evirilmiş tamponlar kullanılır.
555 zamanlayıcı kararsız bir çok katlı titreşici olarak görev yapar ve R1 R2 C1 tarafından belirlenen
bir saat frekansı üretir. Bu çevrimdeki tek bir LED in yanmasıyla gösterildiği gibi 74HC4017 yi her
bir saat başına bir adım besler. Eğer 555 4015 in saat pinini güvenilir şekilde beslemezse 555 ile
4017 arasında tek bir tampon basamağından geçirin. Değişken bir R2 basamak oranı değiştirebilir.
Ayrıştırıcı C2 sığasının değeri önemli değildir. Benzer bir sığa 4017 nin güç ve toprak pinleri
arasında uygulanmalıdır.
Yukarıdaki Johnson sayacı (QA QB QC) ye göre birbirinden 60o faz farklı 3-fazlı kare dalgalar üretir.
Fakat güç uygulamalarında 120o fazlı dalga formlarına ihtiyacımız vardır. P1=QA P2=QC P3=QB'
seçmek istenen 120o fazı oluşturur. Aşağıdaki şekle bakınız. Eğer bu (P1 P2 P3) ü bir düşük-geçiş
filtre edilip sinüs dalgaya dönüştürülür ve güçlendirilirse bu 3-fazlı bir güç kaynağının başlangıcı
olabilir. Örneğin 3-fazlı 400 Hz de çalışan küçük bir uçak motorunu mu beslemek istiyorsunuz? Öyle
ise yukarıdaki devre SAAT ine 6x 400Hz besleme yapın. Bütün bu dalga formlarının görev
döngüsünün %50 sinde çalıştığına dikkat edin.
Aşağıdaki devre 3-fazlı üst üste binmeyen %50 den daha az görev döngüsü olan dalga formları
üretir, bunlarla 3-fazlı adım motorları beslenebilir.
Yukarıda QA QB QC üst üste binen çıkışlarını üst üste binmeyen P0 P1 P2 çıkışlarına aşağıda
gösterildiği gibi çözeriz. Bu dalga formları aşağıda gösterildiği gibi ULN2003 sürücüleri yada sonraki
devrede gösterilen ayrı bileşenli Darlington çift sürücüsü kullanılarak mA seviyesinden kesirli amper
seviyesine uygun şekilde yükseltildikten sonra 3-fazlı adım motorunu besler. Motor sürücüsünü
saymazsak bu devre için üç tane entegre devre (IC) paketine ihtiyacımız var: iki tane çift "D" tipi
FF paketi ve bir tane dörtlü NAND geçidi.
Yukarıdaki tek CD4017 yukarıda gösterilen devrede gerekli olan 3-fazlı adım dalga formlarını
Johnson sayacını üçüncü saymada temizleyerek üretir. 3. sayma kendini temizlemeden önce bir
mikro saniyeden daha az bir süre devam eder. Diğer sayımların (Q0=G0 Q1=G1 Q2=G2) her biri
tam bir saat periyodunca var olur.
Yukarıda gösterilen Darlington çift kutuplu transistör sürücüleri ULN2003 nin dahili devresi yerine
kullanılabilir. Bu sürücülerin tasarımı bu sayısal elektronik konusunun dışındadır. Herhangi bir
sürücü herhangi bir dalga formu oluşturan devre ile kullanılabilir.
Bu bölümde daha önce gösterilen CD4017 nin dahili mantığı çerçevesinde yukarıdaki dalga formları
çok anlamlıdır. Dahili çözücü için AND geçit denklemleri gösterilmiştir. QA QB QC sinyalleri pin-
çıkışlarında bulunmayan Johnson sayacının direkt kaydıran yazmaç çıkışlarıdır. QD dalga formu
4017 nin her üç saatte bir reset olduğunu gösterir. Q0 Q1 Q2 vs. çıkış pinlerinde bulunan çözülmüş
çıkışlardır.
Yukarıda tek kutuplu adım motorunu beslemek için dalga formları üretiyoruz, bu motor sadece tek
kutuplu bir besleme sinyaline ihtiyaç duyar. Yani sarımlara giden beslemenin kutuplanmasını ters
çevirmek zorunda değiliz. Bu 4017 ile motor arasındaki güç beslemesini kolaylaştırır. Daha önce
diyagramda gösterilen Darlington çiftleri ULN2003 için kullanılabilir.
Tekrar, son sayımdan sonucunda bir reset ile CD4017B gerekli dalga formlarını üretir. Q0 Q1 Q2 Q3
çözülmüş çıkışları adım motoru bobinlerini başarılı bir şekilde besler ve Q4 her bir dört darbe grubu
sonunda sayacı resetler.

Benzer belgeler