ĠNġAAT MÜHENDĠSLĠĞĠNE GĠRĠġ DERSĠ

Transkript

ĠNġAAT MÜHENDĠSLĠĞĠNE GĠRĠġ DERSĠ
ĠNġAAT MÜHENDĠSLĠĞĠNE
GĠRĠġ DERSĠ
1
ULAġTIRMA MÜHENDĠSLĠĞĠ
4
UlaĢtırma mühendisi, insan ve taĢınacak malların ulaĢımında,
ulaĢım yollarının güvenli dizaynını tasarlar. Trafik mühendisi;
yolların,
otobanların,
projelendirmesini
PROF. DR. İLKER ÖZDEMİR
uygun
tren
yollarının,
standartlara
göre
kavĢakların
yapar.
imalat
aĢmasında proje müdürü, Ģantiye Ģefi, arazi mühendisi
pozisyonun da yolun projeye uygun bir Ģekilde imal edilmesini
YRD. DOÇ. DR. OSMAN AYTEKİN
sağlar. TC Karayolları, TCDD, Ġl Özel Ġdareleri gibi kamu
kuruluĢlarında görev alarak, iĢin hem imalatını hem de
kontrolünü üstlenirler.
ULAġTIRMA MÜHENDĠSLĠĞĠ
ULAġTIRMA MÜHENDĠSLĠĞĠ
2
5
Ulaştırma Mühendisliği nedir?
Zaman ve mekân kavramı olmadan insanların ve malların
hareketini sağlayacak olan her türlü yolların, bu yollardaki
yapıların
ve ilgili hizmetleri yapılarının tasarlanması olarak
tanımlanabilir.
6
3
SA
?
E
F
7
F
A
S
E?
ULAġTIRMA MÜHENDĠSLĠĞĠ
10
Karayolları, her zaman insan ve mal için
en önemli ulaĢım yolları olmuĢtur ve
olacaktır.
ULAġTIRMA MÜHENDĠSLĠĞĠ
8
ULAġTIRMA MÜHENDĠSLĠĞĠ
9
ULAŞIM SİSTEMLERİ
(Transportation modes)
Karayolu (Highways)
Demiryolu (Railways)
Deniz Yolu (Seaways)
Hava Yolu (Airways)
Boru Hatları (Pipeline)
11
12
UlaĢtırma Sistemlerindeki Tarihsel GeliĢim
13
Ridership
Automobile
Bus
Hybrid
Cars
Electric
Tramway
Cable car
Horse-drawn
Omni bus
Environmentally
Friendly
Time
1860
1893
1923
1948
16
UlaĢtırmanın Tarihçesi
Bir UlaĢtırma Sisteminde Hayat Döngüsü
17
14
Ridership
Growth to
Maturity
Decline
Decline
Innovation
Period
Nostalgia
Nostalgia
Time
Year: 1804
Year: 2008
Speed: 8 km/h
Speed: ~ 500 km/h
Railway
UlaĢtırmanın Tarihçesi
18
In Japan nearly 40
years, In Europe nearly
25 years
Long distance
Very High speed
Locomotives
High speed
Interurban
Regional
Tram
Metro
Speed
15
320 km/h
300 km/h
TGV Duplex (France)
Which mode has the most problems??
230 km/h
AVE (Spain)
200 km/h
New Pendolino (Italy)
Italy)
300 km/h
Virgin West Coast Pendolino (UK)
KTX (South Korea)
Korea)
22
19
Importance of Transportation
UlaĢtırmanın üç temel yolu
23
 Necessary for economic growth, but not sufficient
- The speed, cost, and capabilities of available
transportation have a significant economic impact on
an area
- Countries with better/advanced transportation
networks and services are leaders in industry and
commerce
USA, Japan, Germany, ...
1) Land
-Railway
-Highway
-Pipeline
20
21
Importance of Transportation
24
2) Sea
 Determines the location and character of cities and
regions by interacting with land use (e.g. silk road)
 National security
3) Air
Transportation Engineering
Components of the Transportation System
28
25
 Multi-disciplinary
 Infrastructure (supply):
-Physical facilities: highways, railroads, ports
-Transfer points: parking areas, driveways
-Supporting elements: signals, signs, safety
hardware, etc.
 Vehicles (demand): Planes, trains, autos,
buses, ships, trucks
 Operators/users: Drivers, pilots, freight,
passengers
What is Transportation Engineering
-Economic
-Environmental
-Planning
-Statistics
-Law
-Psychology & human factors
-Public administration
 Problems ==> solutions
Areas of Transportation Engineering
29
26
 The engineering profession is involved in
all aspects of
-Aeronautical (aircraft)
-Chemical (fuel)
-Mechanical (vehicles)
-Electrical (communications, control system)
-Civil (development of facilities and manage
demand)
Transportation Engineering
27
 One of the specialty areas of civil engineering
- Development of facilities for the movement of goods
and people
- Planning, design, operation and maintenance
 People oriented
 Transportation Planning
 Traffic Operations (signs, signals,..)
 Roadway Geometric Design
 Pavement Engineering
 Railway Engineering
 Design and Planning of Airports
Development of Transportation Network
30
 Planning
 Design
 Construction
What is transportation planning?
34
31
Activities that:
1. Identify problems, gather and analyze data
2. Forecast future traffic demands and estimate the
environmental and social impacts
3. Evaluate alternatives and determine the
alternative that meet the requirements and
constraints of the problem at the lowest cost
 Bridges and structural technology:
 Traffic loads-Effects of weathering
 Historical Structures
 Precast concrete bridges
 Monitoring
and inspection equipment
 Corrosion protection
 Tunnel construction
The 4 step transport planning process
35
32
Demographic
Data
Step 1: Trip
Generation
Transportation
Network
Step 2: Trip
Distribution
Step 3: Mode
Choice
Step 4: Trip/ Traffic
Assignment
 Construction technology:
 Natural soil foundations33
 Recyling methods-Alternative construction
materials
 Pavements-Highway maintenance-Slopes
 Pavement surface courses;asphalt and
concrete
 Ecology
 Traffic engineering:
 Highway capacity
 Intersections and their capacity
 Traffic flow and operation
 Traffic management systems
 Traffic signs-Pavement markings
 Automotive engineering
36
 Active and passive safety
 Crash tests
 Pedestrain protection
 Protective helmets
 Vehicle emissions
Alignment
40
37
 Alignment is a 3D
 Behaviour and safety in highway traffic
 Safety research and safety concepts
 Accident statistics
problem broken down
into two 2D problems


 Observation of road
Horizontal Alignment
(plan view)
Vertical Alignment
(profile view)
users behaviour
 Safety campaigns
 Risk groups
 Traffic medicine
Problem
38
Vertical
Alignment
Lombard Street, San
Francisco, CA
Horizontal
Alignment
41
Highway in west China
Vertical Alignment
Constraints
42
39
 Environmental
-Wetland, ponds and creeks.
 Geometric
- 90m flat grade for starting and ending points.
- Simple horizontal and vertical curve
 Safety
- Maximum grade
- Minimum radius
- Enough stopping sight distance
 Budget
- Maximum cut-and-fill depth
- Mass balance
 Objective:
 Determine elevation to ensure
 Proper
drainage
level of safety
 Acceptable
 Primary challenge
 Transition between two grades
 Vertical curves
Sag Vertical Curve
G1
G2
Crest Vertical Curve
G1
G2
Horizontal Alignment
46
43
 Objective:
 Geometry of directional transition to ensure:
 Safety
 Comfort
 Primary challenge
 Transition between two directions
 Horizontal curves
 Fundamentals
 Circular curves
 Superelevation
Mass Diagram
Fill areas
44
Cut areas
Indicate grade points
Indicate points where
47
cuts =
fills
Ground
Elevation
Profile
Grade
Volume
Mass
diagram
Pavement Design
45
Flexible
(WsDOT, u.d.)
Rigid
Pavements
Pavements
Surface layer is asphalt
concrete
Surface layer is portland
cement concrete
48
Sorularınız var mı?
49
50
51
52

Benzer belgeler

tıklayınız. - Metro İstanbul

tıklayınız. - Metro İstanbul İstanbul Büyükşehir Belediyesi Ulaşım Ana Planına bağlı kalınarak mevcut raylı sistem hatlarını 2019 yılına kadar 476,58 km’ye uzun vadede 999,73 km’ye uzatılması hedeflenmektedir. Bu yatırımlarla ...

Detaylı