Radar Kavrami

Transkript

Radar Kavrami
5/10/2013
Ankara
Radar Systems and Remote Sensing
Research Group
TOBB ETÜ – Turgut Özal - Bilkent
TOBB UNIVERSITY OF
ECONOMICS AND
TECHNOLOGY
DERS 2
Radar Kavramı
Yrd. Doç. Dr. Sevgi Zübeyde Gürbüz
ELE 465: Radar Sinyal İşleme Temelleri
ELE 565: Radar ve Sonar Sistemleri
Tipik bir Radar Sistemi
2
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
1
5/10/2013
Radar Konfigürasyonları
3

Monostatik Radar:


Bistatik Radar:


Aynı antenden sinyal
alıp veiliyor.
Alıcı ve verici konumları farklı
Multistatik Radar:

Birden fazla sayıda farklı
konumları olan alıcılar ve vericiler
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Menzil Ölçümü
4


Zaman gecikmesinden menzil hesaplanır.
Monostatik radar için
2 R  c  t  R 
c  t
2
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
2
5/10/2013
Menzil Çözünürlüğü
5

İki hedefi birbirinden ayırt edebildiğimiz
maksimum menzil farkı.
 Yansımaların
 Menzil
zaman farkı:
çözünürlüğü:
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Açısal Çözünürlük
6
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
3
5/10/2013
Doppler Etkisi
7


Eğer radar ile hedefin arasında bir relatif hız
farkı mevcut ise, Doppler effektinden dolayı
gönderilen sinyalin frekansı (Ft) alınan sinyalin
frekansından (Fr) farklı olacak.
Doppler kaydırması:
radara doğru hareket eden b,r hedefin hızı
 c: ışığın hızı
 v:
 1 v c 
Fr  
Ft

 1 v c 
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Düşük hız için basitleştirelim...
8

Hedefin hızı ışığın hızına göre her zaman
çok küçüktür, dolayısıyla binomial
açılımıyla basitleştirebiliriz:
1
Fr  1  v c 1  v c  Ft
 1  v c  1   v c    v c  

2
 1  2  v c   2  v c  

2
F
 t
F
 t
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
4
5/10/2013
Düşük hız yakınsaması...
9

v/c çok küçüktür dolayısıyla
Fr  1  2  v c   Ft

Doppler kaydırması frekansı farkı olduğu için
FD  

2v
2v
Ft  
c
t
Hedef radara doğru hareket ediyorsa, hız pozitif
olarak alınmaktadır.
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Radar radiyal hızı ölçer...
10
y
Doppler etkisi
hedefin radiyal
hız bileşeni
tarafından
belirlenir

v
v

FD  0
boresight
direction
 = 90º
FD  
2v

cos 
x
radar antenna
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
5
5/10/2013
Örnek Doppler Sorusu

An airborne radar is
traveling north at 200
m/s. A target
approaches from the
NE, also traveling at
200 m/s. The radar is
X band (10 GHz).
What is the Doppler
shift of the echo?
200 m/s
11
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Cevap:
m
0
20
An airborne radar is traveling north at 200
m/s. A target approaches from the NE, also
traveling at 200 m/s. The radar is X band (10
GHz). What is the Doppler shift of the echo?
 total closing velocity
= 200 + 200cos(45°)
= 341.4 m/s
  = c/F= 3x108/1x1010 = 0.03 m
 FD = 2v/ = 2(341.4)/0.03 = 22.76 kHz
200 m/s

/s
12
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
6
5/10/2013
Bant Genişliğin Doppler Etkisi
13
Radar sinyalleri saf sinüslerden
oluşmamakadır, sonlu bir bant genişliğine
sahipler.
 Bant genlişliği genellikle en fazla merkez
frekansın %10’u dır.
 Dolayısıyla önemsenmesi gereken bir etki
yaratmamaktadır.

Br  1  2  v c  Bt
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Uygulamaya Göre Radar Türleri
14
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
7
5/10/2013
Radar Frekansları
15
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Radar Bant Tanımları
16
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
8
5/10/2013
Darbe Şekline Göre Radar Türleri
17
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Darbe Doppler Radar
18

Radar, periyodik olarak bir ötüş sinyali
göndermektedir.
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
9
5/10/2013
Darbe Tekrarlama Aralığı (PRI)
19
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Belirsizliği Olmayan Maksimum Menzil
20
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
10
5/10/2013
Belirsizlik Olunca...
21

...menzil hatalı
algılanır...
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Minimum Algılama Menzili
22

Radar sinyali gönderirken genellikle aynı
antenden herhangi bir yansımayı
alamaycağından dolayı, monostatik bir
radarin minimum algılama menzili:
Rmin 
c
2
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
11
5/10/2013
Alınan Sinyal Sadece Hedeften Değil
23

Received signal is a superposition of several
components:
 target
echoes (direct and multipath)
 clutter
 surface (ground, sea)
 weather (clouds, rain)
 noise
 external (cosmic noise)
 internal (shot, thermal, etc.)
 jamming
 electromagnetic interference
 TV stations
 cell phones
(EMI)
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
24
RADAR
ERİM
DENKLEMİ
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
12
5/10/2013
Radar Erim Denklemi
25
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Radar Erim Denklemi
26
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
13
5/10/2013
Hedeften Saçılım
27
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Antenin Alım Alanı
28
Ae is NOT the physical area
of the antenna. It is a fictional
area that accounts for the amount
of incident power density captured
by the receiving antenna.
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
14
5/10/2013
Kayıplar
29



Received power calculation so far is for an ideal radar in free
space with no processing to increase sensitivity
Real systems suffer losses in duplexers, waveguide, power
dividers, radome, etc. represented by a system loss factor
Ls
Also suffer atmospheric propagation losses


function of range
with R in meters, loss factor
a in dB/km, we have
La  R   10a R 5000
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Atmosferik Kayıplar
30

Low frequencies



propagate further
higher power devices available
Source: EW and Radar Systems
Engineering Handbook, Naval Air
Warfare Center, Weapons Division.
See http://ewhdbks.mugu.navy.mil/
High frequencies

narrower beams give better resolution
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
15
5/10/2013
Yağış Kayıpları Etkilemektedir
31
Source: EW and Radar Systems
Engineering Handbook, Naval
Air Warfare Center, Weapons
Division. See
http://ewhdbks.mugu.navy.mil/


Becomes very significant at MMW frequencies
Limits radar range
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Noktasal Hedef İçin Radar Erim
Denklemi

Adding in loss factors gives:
Pr 

32
2 2
PG

t
 4  R 4 Ls La  R 
3
W
Note for a point target, received power decreases
as R4:
 Doubling
range while maintaining received power
requires


16x (12 dB) transmitted power increase, or
4x (6 dB) antenna gain increase  4x antenna area increase
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
16
5/10/2013
Birimlere Dikkat!
33
Pr 


2 2
PG

t
 4 
3
R Ls La  R 
4
W
All terms in the range equation are in linear units
However, parameter values are often provided
in dB units
 e.g.
antenna gain is 30 dBm, atmospheric loss is 1
dB/km, etc.

So don’t forget to do your unit conversions!
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Örnek
34






X band (10 GHz)
  = 3x108/10x109 = 3 cm
Transmitted power Pt = 1 kW
Beamwidth (azimuth and elevation) = 1º
 G = 26,000/(1)(1) = 26,000 = 44 dB
Jumbo jet aircraft: RCS = 100 m2
Range R = 10 km
What is received power Pr?
12 orders of
magnitude!
1,000  20,000   0.03 100   5.18x109 Watts
Pr 
3
4
 4  10,000 
2
2
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
17
5/10/2013
Alıcı Gürültüsünü de Ekleyelim
35
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Maksimum Sezim Erimi
36
Pt G 22
Pr

Pn 4 2 R 4 Ls La ( R)kT0 BF
Rmax




Pt G 2 2






P
2
 4  L L ( R)kT BF  r  
s a
0
P  

 n  min 

1
4
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
18
5/10/2013
Distributed Target Form of the
Radar Range Equation
37

Range equation so far is for “point targets”
 target

small compared to resolution cell
We are also interested in “distributed targets”
 surface
clutter: scattering from a homogeneous
area

ground, sea clutter
 volume
clutter: scattering from a homogeneous
volume
weather (rain, clouds, hail, etc.)
 smoke, chaff, etc.

Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Approach
38

Approach based on a differential
scattering element
 differential
area or volume is the scatterer
 have to combine contributions from each
differential scattering element

Still start with transmitted isotropic
power density:
Pt
W/m 2
2
4 R
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
19
5/10/2013
Transmitted Power Density
39

No longer assume single scatterer in
direction of peak antenna gain; so must
account for antenna gain in direction of
each scatterer of interest to get
transmitted power density
Qt  ,  

PP
t  ,  
4 R 2
W/m 2
Assume P(0,0) = G
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Differential Received Power
40

At every (azimuth,elevation) (,), we get
backscatter based on the local differential
RCS
 again
assume isotropic re-radiation
 weighted by the effective aperture (thus the
antenna pattern) again on receive
 account for system and atmospheric losses again
dPr 
2
PP
 ,   2 d  R, , 
t
 4 
3
R 4 Ls La  R 
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
20
5/10/2013
Total Received Power
41

Integrate over 3-D space to obtain
generalized radar range equation:
Pr 
Pt  2
 4 


3

Ls V
P 2  , 
d  R, , 
R 4 La  R 
 note
that integrating power assumes noncoherent
combination of scattering element contributions

However, scatterers in all of 3-D space don’t
contribute to receiver output at the same time
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Total Power from a Resolution Cell
42

Only scattering elements within a resolution cell
 radians
contribute to receiver output
 radians
at a given instant:
R m
Pr 


Pt  2
 4  Ls
3





V  R0 ,0 ,0 
P 2  , 
R 4 La  R 
d   R , ,  
V(R0,0,0) is the differential scattering volume
centered at nominal coordinates (R0,0,0)
Check against point scatterer equation:
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
21
5/10/2013
Point Scatterer
43
Point scatterer implies differential scatterer
modeled by an impulse function:
d  R, ,    D  R  R0 ,  0 ,  0  dV
 Results in generalized point target range
equation:
2
PP
 0 , 0   2 

t
Pr 
W
3
4
 4  R0 Ls La  R0 

 identical
to previous version if
0 = 0 = 0  P  0 ,0   G
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
44
RADAR
KESİTİ
RADAR CROSS SECTION (RCS)
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
22
5/10/2013
RCS Tanımı
45

Suppose
power density on a target is Qt W/m2;
 backscattered power density is Qb W/m2; and
 backscattered power is Pb W
 incident
Note that Qt and Qb are the measurable
quantities
 Pb must satisfy

Qb 
Pb
4 R 2
W/m 2
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
RCS Tanımı
46

RCS is the fictional area that accounts for Pb:
Pb   Qt
W
  4 R 2
Qb
Qt

Therefore

Thus RCS is the fictional area that accounts
for the relative value of backscattered power
density in terms of the incident power density
 assuming
isotropic reradiation of backscatter
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
23
5/10/2013
RCS Tanımı
47
RCS usually defined in terms of electric
field amplitude, not power
 Also take limit as R   to remove
dependence on range

 then
RCS depends only on scatterer
characteristics

E
2

  4 lim R
R  
Et

b


2


2
Backscattered
E-field amplitude
Transmitted
E-field amplitude
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Tipik RCS Değerleri
48
Target
RCS, m2
RCS, dBsm
Conventional unmanned winged missile
0.5
-3
Small single-engine aircraft
1
0
Small fighter aircraft or 4-passenger jet
2
3
Large fighter aircraft
6
8
Medium bomber or jet airliner
20
13
Large bomber or jet airliner
40
16
Jumbo jet
100
20
Small open boat
0.02
-17
Small pleasure boat
2
3
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
24
5/10/2013
Tipik RCS Değerleri
49
Target
RCS, m2
RCS, dBsm
Cabin cruiser
10
10
Large ship at zero grazing angle
10,000+
40+
Pickup truck
200
23
Automobile
100
20
Bicycle
2
3
Human
1
0
Bird
0.01
-20
Insect
0.00001
-50
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Bir Kürenin Radar Kesiti
50

Three regions,
depending on
relative size of
sphere and
wavelength
For radius
r >> 
   r2

10
RCS Normalized to r2 (dB)

0
-10
-20
Mie
aspect and
(resonance)
Rayleigh
Optical
-30
frequency
Region
Region
Region
independence
makes this a
10-1
100
101
102
good calibration
Sphere Circumference in Wavelengths, 2(r/)
target
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
25
5/10/2013
Basit Şekillerin Radar Kesiti
51
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Gerçek Hedeflerin Radar Kesiti
52
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
26
5/10/2013
Stealth Teknoloji
53
F-117 Nighthawk
İlk Uçuş: 1981
Adet: 54
B-2 Spirit
Ilk Uçuş: 17 Temmuz 1989, Adet: 21
Nukleer ve Konvansiyonel Bombalar
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Yeni Nesil Stealth
54
F-35 Joint Strike Fighter (JSF)
Üretim aşamasında
F-22 Raptor
Ilk Uçuş: 1997
Hizmete 2004 yılında girmiş
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
27
5/10/2013
Chinese Stealth J-31 
55
İlk Uçuş: 31 Ekim 2012
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Stealth Yöntemler
56

Şekil
yüzey olmayacak – daha çok yansıtır
 Veya F-117 gibi yansımları her yöne saçacak
şekilde seçilmeli
 Kapılar ve panellerin birleştiği hatlar hafif
oyulmuştur uzun çizgiler oluşturmamak için
 Eğimli arka kanatlar uçağın düzlükleri gizliyor
 Düz
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
28
5/10/2013
Şekil Tasarımına Devam
57

Angular Air Intakes

The air intakes on the F-117 and B-2 are carefully shielded since
their large scoop-like shape tends to create what radar scientists
call corner reflectors--shapes that can reflect radar much more
strongly than a flat plane. Hiding the air intake in the structure
works to obscure it from enemy radar, but the F-22 uses a more
advanced trick where the intakes are, like the tail fins, arranged
at peculiar angles that avoid forming corner reflectors.
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Stealth Yöntemler
58

Radar Emici Malzemeler
 Metal
yerine karmaşık malzemeler
 Hem daha dayanıklı hem radar yansıması
daha az
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
29
5/10/2013
F-22 Malzeme Tasarımı
59

Materials:
 Carbon-fiber
composites
 Magnetic
ferrite-based
substance

RAM makes
object appear
smaller
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Problems with RAM
60

Must be defect free
 Risk
during in-flight fueling
High maintanence
 Affected by weather

 Reason
for why B-2 stationed only in US
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
30
5/10/2013
Infrared Signature, Supercruise
Engines

61
The F-117 and B-2 hid their engine exhaust from infrared sensors (on missiles and other surveillance systems)
by venting the jet plume through louvers and over the
body of the aircraft. The F-22 can't do this trick, as its
more powerful supersonic-capable engines make the
effect harder. Instead it uses a slightly masked exhausts,
and a technique called supercruise, which means it can
break the sound barrier without needing the infra-red
give away of reheat. This lowers its infra red signature a
lot.
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
J-20 versus F-22 Exhausts
62

Big cylindrical engines give off a lot of
infra-red heat, this is BAD
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
31
5/10/2013
Steath and Detection Range
63
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
Counterstealth
64
Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
32
5/10/2013
Kaynakça
65
Mark Richards ve C.J. Baker’in sunumları
 Kitaplar

Ankara Radar Systems and Remote Sensing Research Group © SZG 2012
33

Benzer belgeler

Line Card - ROM Elektronik

Line Card - ROM Elektronik Coilcraft was founded in 1945 as a custom coil maker for the television set manufacturers clustered around the Chicago area. Today, Coilcraft produces inductors for a long list of customers in elec...

Detaylı

Kullanımına İzin Verilen Yem Katkı Maddeleri Kayıt Listesi

Kullanımına İzin Verilen Yem Katkı Maddeleri Kayıt Listesi Tüm Hayvan Türleri veya kategorileri Tüm Hayvan Türleri veya kategorileri Tüm Hayvan Türleri veya kategorileri Tüm Hayvan Türleri veya kategorileri Tüm Hayvan Türleri veya kategorileri Tüm Hayvan T...

Detaylı

LigoDLB PRO

LigoDLB PRO when doing antenna alignment. Supported pole diameters are from 25 mm (0.98 inch) to 75 mm (2.95 inches). All devices have an IP-67 enclosure and integrated surge suppression to provide best in cla...

Detaylı

Radar Erim Denklemi Konuları Pekiştirelim

Radar Erim Denklemi Konuları Pekiştirelim TOBB ETÜ – Turgut Özal - Bilkent

Detaylı