G3-1 - bilişim teknolojileri enstitüsü

Transkript

G3-1 - bilişim teknolojileri enstitüsü
01.07.2014
UYGU 2104 – Uydu Yer Gözlem Uygulamaları Yaz Okulu
TÜBİTAK
Introduction to
Microwave Remote Sensing
Mehmet Kurum
TÜBİTAK BİLGEM
Bilişim Teknolojileri Enstitüsü
WED.AM1
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Content
UYGU 2014
TÜBİTAK
PART I – Fundamentals
Reference Books
Motivation
•
•
brightness temperature and emissivity
Radiometer systems
•
antenna concepts, arrays
Passive microwave remote sensing and radiometry
•
Lossless, lossy media, layered media
Antenna systems in microwave remote sensing
•
Why microwaves for remote sensing?
Plane wave propagation, reflection, refraction, and attenuation
system noise, Dicke radiometer
Radar systems
•
range equation, Doppler effects, fading
PART II – Specific Examples (Friday)
Scattering and emission from natural targets
•
surface scatter, volume scatter, the sea, ice, snow, vegetation
Microwave remote sensing applications
•
sea ice, oceans, vegetation, etc.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
2
1
01.07.2014
References
UYGU 2014
TÜBİTAK
Fundamental Books
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Fundemental Books – Ulaby et. al.
3
UYGU 2014
TÜBİTAK
Ulaby, F. T., R. K. Moore, and A.K. Fung, Microwave Remote Sensing: Active and Passive, Vol. I
-- Microwave Remote Sensing Fundamentals and Radiometry, Addison-Wesley, Advanced Book
Program, Reading, Massachusetts, 1981, 456 pages.
Ulaby, F. T., R. K. Moore, and A.K. Fung, Microwave Remote Sensing: Active and Passive, Vol. II
-- Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley,
Advanced Book Program, Reading, Massachusetts, 1982, 609 pages.
Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol.
III -- Volume Scattering and Emission Theory, Advanced Systems and Applications, Artech
House, Inc., Dedham, Massachusetts, 1986, 1100 pages
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
4
2
01.07.2014
Books – Ulaby and Long
UYGU 2014
TÜBİTAK
Ulaby and Long, Microwave Radar and Radiometric Remote Sensing, University of Michigan
Press, 2014, 1116 pages.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Books – Tsang et. al.
5
UYGU 2014
TÜBİTAK
L. Tsang, J. A. Kong, and R. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New
York, 1985.
L. Tsang, J.A. Kong, and K.H. Ding, Scattering of Electromagnetic Waves, Vol. 1:Theory and
Applications , Wiley Interscience, 2000, 426 pages.
L. Tsang, J.A. Kong, K.H. Ding and C.O. Ao, Scattering of Electromagnetic Waves, Vol. 2:
Numerical Simulations, Wiley Interscience, 2001, 705 pages.
L. Tsang and J.A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, Wiley
Interscience, 2001, 413 pages.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
6
3
01.07.2014
Books - Ishimaru
UYGU 2014
TÜBİTAK
Akira Ishimaru, Wave Propagation and Scattering in Random Media: Single scattering and
transport theory, Academic Press, 1978 - 572 pages
Akira Ishimaru, Wave Propagation and Scattering in Random Media: Multiple Scattering,
Turbulence, Rough Surfaces, and Remote Sensing, Academic Press, 1978 - 250 pages
Akira Ishimaru, Wave Propagation and Scattering in Random Media, Wiley-IEEE Press, 1999 600 pages
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Books - Fung
7
UYGU 2014
TÜBİTAK
Adrian K. Fung, Microwave Scattering and Emission Models and their Applications, Artech
House Remote Sensing, 1994 - 592 pages
Adrian K. Fung , K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House
Remote Sensing, 2009 - 430 pages
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
8
4
01.07.2014
Books - Elachi
UYGU 2014
TÜBİTAK
C. Elachi, Introduction To The Physics and Techniques of Remote Sensing, Wiley-Interscience,
New York, 1987, 432 pages.
C. Elachi, F. T. Ulaby, Radar Polarimetry for Geoscience Applications, Artech House, 1990, 388
pages.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Books - Matzler
9
UYGU 2014
TÜBİTAK
C. Matzler, Thermal Microwave Radiation: Applications for Remote Sensing , The Institution of
Engineering and Technology, 2006 - 584 pages
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
10
5
01.07.2014
Content
UYGU 2014
TÜBİTAK
Motivation
Why Microwaves for Remote Sensing?
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Emission Spectrum, Atmospheric Tranmissivity
11
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
12
6
01.07.2014
Microwave Atmospheric Window
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Microwave remote sensing
background
13
UYGU 2014
TÜBİTAK
Optical remote sensing has been around a long time
•
•
•
•
•
Uses the visible part of the electromagnetic spectrum
Instrumentation includes the human eye, cameras, telescopes
Has problems with clouds, rain, fog, snow, smoke, smog, etc.
Cannot penetrate soil, vegetation, snowpack, ice
Relies on ambient light sources (e.g., sunlight)
Microwave remote sensing is less than 100 years old
•
•
•
•
•
Uses the microwave and RF parts of the spectrum
Instrumentation includes radars and radiometers
Is largely immune to clouds, precipitation, smoke, etc.
Penetrates sand, soil, rock, vegetation, dry snow, ice, etc.
Does not rely on sunlight – radar provides its own illumination,
radiometers use the target’s thermal emission
Data from microwave sensors complement data from
optical sensors
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
14
7
01.07.2014
Microwave Sensors
UYGU 2014
TÜBİTAK
Microwave Sensors
Active (Radars)
Real Aperture
Synthetic Aperture (SAR)
Passive (Radiometers)
Real Aperture
Synthetic Aperture
(Interferomters)
Scatteromters
Altimeters
Weather Radars
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Basic elements of a remote sensing
radar instrument
15
UYGU 2014
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
TÜBİTAK
16
8
01.07.2014
Key elements of a microwave
radiometer
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Microwave Remote Sensing
17
UYGU 2014
TÜBİTAK
Microwave Remote Sensing
0.3 - 300 GHz ( wavelength 1 m - 1 mm )
Active
Passive
(Radiation or TB [K])
Radiometers
TB = e T
Where e is emissivity and T
is physical temperature
(Backscattering σ0 [dB ])
Radar
depends on dielectric
properties of soil,
geometric properties and
system parameters.
σ0
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
18
9
01.07.2014
Application of Remote Sensing
UYGU 2014
TÜBİTAK
Atmosphere(e.g. temperature, water vapour, rain
intensity, etc.)
Sea(e.g. winds, salinity, etc.)
Ice (e.g. depth, age, etc.)
Land (e.g. soil moisture, crop biomass, forest
biomass, classification)
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Basic Rationale for Applications
19
UYGU 2014
TÜBİTAK
Instrument outputs may be related to surface
variables
The relationship defines a “model”
Physical models
Empirical models
Combinations
Forward
Microwave
Measurements
Model
Target
Parameters.
Inversion
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
20
10
01.07.2014
Steps
UYGU 2014
TÜBİTAK
Adopting a convenient instrument (suitable selection of
frequency, look angle, revisit time, etc.)
Developing a reliable model (direct problem)
surface variables -> instrument outputs
Retrieval (inverse problem)
instrument outputs -> surface variables
Forward
Microwave
Measurements
Model
Target
Parameters.
Inversion
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radiometric Sensitivity
21
UYGU 2014
TÜBİTAK
The arrows indicate the SMMR frequencies. The signs have been chosen to be positive
in the frequency range of primary importance to the given parameter [from Wilheit et al.,
1980].
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
22
11
01.07.2014
Main physical processes
UYGU 2014
TÜBİTAK
Surface Scattering
Sea, bare soil, etc.
Volume Scattering
vegetation, snow, etc.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Passive Microwave Applications
23
UYGU 2014
TÜBİTAK
Soil moisture
Snow water equivalent
Sea/lake ice extent, concentration and type
Sea surface temperature
Atmospheric water vapor
Surface wind speed
only over the oceans
Cloud liquid water
Rainfall rate
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
24
12
01.07.2014
Imaging Radar Applications
UYGU 2014
TÜBİTAK
Environmental Monitoring
Vegetation mapping
Monitoring vegetation regrowth, timber yields
Detecting flooding underneath canopy, flood plain mapping
Assessing environmental damage to vegetation
Hydrology
Soil moisture maps and vegetation water content monitoring
Snow cover and wetness maps
Measuring rain-fall rates in tropical storms
Oceanography
Monitoring and routing ship traffic
Detection oil slicks (natural and man-made)
Measuring surface current speeds
Sea ice type and monitoring for directing ice-breakers
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Applications to Forestry
25
UYGU 2014
TÜBİTAK
National agencies/companies
Clear cut mapping / regeneration assessment
Disturbances
Infrastructure mapping / operations support
Forest inventory / biomass estimation
Vegetation density
Species inventory
Environmental Monitoring
Deforestation
Species inventory/ habitat mapping
Watershed protection
Coastal protection
Forest health and vigour
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
26
13
01.07.2014
Examples of SAR Applications
UYGU 2014
TÜBİTAK
Frequency Band
Ka
Ku
X
C
S
L
P
Frequency [GHz]
40-25
17.6-12
12-7.5
7.5-3.75
3.75-2
2-1
0.5-0.25
Wavelength [cm]
0.75-1.2
1.7-2.5
2.5-4
4-8
8-15
15-30
60-120
Foliage Penetration
●
●
Subsurface Imaging
●
●
●
●
Biomass Estimation
Agriculture
●
●
●
●
Ocean
●
●
●
●
Ice
●
●
●
●
Subsidance Monitoring
●
●
●
●
Snow monitoring
VHR Imaging
●
●
●
●
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Hydrological Applications
27
UYGU 2014
TÜBİTAK
The availability of soil moisture data on a global basis is
required to better assist the water, energy, and
biogeochemistry communities.
Weather
& Climate
Forecasting
Drought Early
Warning and
Decision
support
Floods &
Landslides
Agricultural
Productivity
Human
Health
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
28
14
01.07.2014
Evolution of Soil Moisture Mapping
UYGU 2014
TÜBİTAK
Soil Moisture Sensing Technology
Broad science, high spatial
resolution, higher sensitivity (10 km)
Improved global mapping
(50 km)
SMAP
SMOS
AMSR
Large scale mapping and integrated
hydrologic research (1 km)
ESTAR
Exploration of spatial/temporal
concepts (100 m)
PBMR
Field
Experiments
1970s
1980s
Limited global mapping,
demonstrate feasibility (50km)
Ground and aircraft development
verification of theory (1 m)
1990s
2000s
2010s
Time Period
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
L-Band Soil Moisture Space Missions
29
UYGU 2014
TÜBİTAK
[scheduled to launch November in 2014]
[launched in November, 2009]
SMOS:
Soil
Moisture
and Ocean
Salinity
Mission
A combined L-band
radiometer and high-resolution radar
to produce a global 10 km
surface soil moisture data product
An L-band, 2-dimensional
interferometric radiometer design
providing a resolution of 50 km
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
30
15
01.07.2014
Ground and Airborne Observations
UYGU 2014
TÜBİTAK
Calibration / validation of satellite
measurements during the mission
Refinement of current algorithm
parameterizations to improve the accuracy
of microwave moisture retrievals
Acquisition of long-term measurements
to assess seasonal to year-round changes
Examination of “specific” scenes such
as
the continuum of trees from small orchards to
mature forests to extend accurate soil moisture
retrievals to denser land covers
Improved understanding of spatial
scaling and scene heterogeneity issues
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Content
31
UYGU 2014
TÜBİTAK
EM theory and its application to microwave
remote sensing
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
32
16
01.07.2014
EM theory and its application to
microwave remote sensing
UYGU 2014
TÜBİTAK
Plane wave propagation
Lossless media
Lossy media
Polarization
Fresnel reflection and transmission
Layered media
EM spectra, bands, and energy sources
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Plane Wave Propagation
33
UYGU 2014
TÜBİTAK
Plane wave propagation through lossless and
lossy media is fundamental to microwave remote
sensing.
Consider the wave equation and plane waves in
homogeneous unbounded, lossless media
Plane waves – constant phase and amplitude in the
plane
Homogeneous – electrical and magnetic parameters
do not vary with throughout the medium
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
34
17
01.07.2014
Maxwell’s equations
UYGU 2014
TÜBİTAK
Beginning with Maxwell’s equations
∂H
∂t
∂E
∇×H = ε
∂t
∇×E = −µ
Fraday’s
Ampere’s
Assuming a homogeneous, source-free medium leads to
the homogeneous wave equation
∇ 2E = µ ε
∂2 E
∂ t2
where
E is the electric field vector (V/m) [note that bolded symbols denote
vectors]
µ is the medium’s magnetic permeability (H/m) [H: Henrys]
ε is the medium’s permittivity (F/m) [F: Farads]
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Solution to Wave Equation
35
UYGU 2014
TÜBİTAK
Assuming sinusoidal time dependence
{
E(r, t ) = Re E(r ) e jωt
}
where ω is the radian frequency (rad/s)
r is the displacement vector
and Re{⋅} is the real operator
E(r,t) satisfies the wave equation if
∇ 2E(r ) + ω2µ ε E(r ) = 0
Using phasor representation (i.e., e.jωt is understood) and
assuming a rectangular coordinate system, the solution
has the general form of
E(r ) = E 0 exp [± j (k x x + k y y + k z z )]
where E0 is a constant vector and
k 2 ≡ ω2 µ ε = k 2x + k 2y + k 2z
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
36
18
01.07.2014
Propagation Vector
UYGU 2014
TÜBİTAK
A more compact form results from letting
k = xˆ k x + yˆ k y + zˆ k z
where k is the propagation vector, and
k = |k| is called the wave number (rad/m)
resulting in
E(r ) = E 0 exp [± j k ⋅ r ]
Finally reintroducing the time dependence and expressing
only the real-time field component yields
E(r, t ) = E 0 cos (ω t ± k ⋅ r )
This equation represents two waves propagating in
opposite directions defined by the propagation vector k
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Time and Space Phase Components
37
UYGU 2014
TÜBİTAK
The time phase component is characterized by ω where
ω = 2πf = 2π T
f is the frequency (Hz) and T is the time period (s).
Similarly the space phase component depends on k where
k = 2π λ = ω µε
λ is the space period (m), or wavelength, in the medium
which can also be expressed as
(
λ =1 f µε
)
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
38
19
01.07.2014
Phase Velocity
UYGU 2014
TÜBİTAK
Consider now the electric field’s phase for a positivetraveling wave, i.e., ωt – kz.
A surface on which this phase is constant requires
ω t − k z = constant
For any given time t, this surface represents a plane
defined by z = constant, on which both the phase and
amplitude are constant. As time progresses, this plane of
constant phase and amplitude advances along the z axis,
hence the name uniform plane wave.
The rate at which this plane advances along the z axis
is called the phase velocity, v (m/s)
dz ω
1
v=
= =
dt k
µε
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Orthogonality of the E, H, and k vectors
39
UYGU 2014
TÜBİTAK
Given an uniform plane E-field solution to the wave
equation, the H-field is found using Maxwell’s equations
∇×E = − µ
∂H
∂t
From the E-field component in the x-axis direction, Ex, is
found the H-field component in the y-axis direction, Hy, as
H y (z , t ) =
k
ωµ
E x 0 cos (ω t − k z ) =
E x0
η
cos (ω t − k z )
where η is the intrinsic impedance (Ω) of the medium
η =ωµ k = µ ε
Note that Ex and Hy are related through the intrinsic impedance similar
to how voltage and current in a circuit are related through Ohm’s law.
Note also the orthogonality of the E, H, and k vectors.
E = xˆ E x , H = yˆ H y ,
k = zˆ k
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
40
20
01.07.2014
Polarization
UYGU 2014
TÜBİTAK
Pottier
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Polarization Handeness
41
UYGU 2014
TÜBİTAK
ROTATION SENSE: LOOKING INTO THE DIRECTION OF THE WAVE
PROPAGATION
ANTI-CLOCKWISE ROTATION
LEFT HANDED POLARISATION
CLOCKWISE ROTATION
RIGHT HANDED POLARISATION
Pottier
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
42
21
01.07.2014
Polarization State - Examples
UYGU 2014
TÜBİTAK
Horizontal
Left-hand Circular
Vertical
Right-hand Circular
Pottier
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Polarization State - Examples
43
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
44
22
01.07.2014
Plane waves in a lossy medium
UYGU 2014
TÜBİTAK
A lossy medium is characterized by its permeability, µ,
permittivity, ε, and conductivity, σ (S/m) [S: Siemens].
Maxwell’s equations for a source-free medium become
∂H
∂E
∇×E = − µ
,
∇×H = σ E + ε
∂t
∂t
And the corresponding wave equation remains
∇ 2E(r ) + k 2 E(r ) = 0
where the wave number is
k = − j ω µ (σ + j ω ε )
Note that for a lossless medium, k is purely real when
σ = 0 and both µ and ε are real
k=
ω2 µ ε
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Plane waves in a lossy medium
45
UYGU 2014
TÜBİTAK
For a lossy medium k is complex
k = − j ω µ (σ + j ω ε )
due to σ ≠ 0 or either µ or ε are complex
µ = µ ′ − j µ ′′
ε = ε ′ − j ε ′′
For lossless media the imaginary parts of the permeability
and permittivity are zero.
Non-zero imaginary terms (µ″ > 0 and ε″ > 0) represent
mechanisms for converting a portion of the
electromagnetic wave’s energy into heat, resulting in a
loss of wave energy.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
46
23
01.07.2014
Plane waves in a lossy medium
UYGU 2014
TÜBİTAK
Consider the complex electric field plane wave
propagation along the positive z axis
E(z , t ) = E 0 e j (ω t − k z )
whereas for the lossless case k was real, in a lossy
medium k is complex and is related to the propagation
factor or propagation constant, γ (1/m), by
γ = j k = j − j ω µ (σ + j ω ε )
γ =α + j β
such that
E( z ) = E 0e − j k z = E 0e −γ z = E 0 e −(α + j β ) z
where α and β are real quantities and α is the attenuation
constant (Np/m) and β is the phase constant (rad/m)
[Np = Neper]
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Plane waves in a lossy medium
47
UYGU 2014
TÜBİTAK
Clearly for a wave travelling along the +z axis
E( z ) = E 0 e − α z e − j β z
as z increases, the magnitude of the electric field
decreases.
The real time expression for the x-axis field component is
E x ( z , t ) = E x 0 e −α z cos (ω t − β z )
The attenuation constant is the real part of jk
α = Re
{
}
j ω µ (σ + j ω ε ) ,
Np/m
The phase constant is the imaginary part of of jk
β = Im
{
}
j ω µ (σ + j ω ε ) ,
rad/m
Note: (Neper/m) × 8.686 (dB/Neper) = (dB/m)
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
48
24
01.07.2014
Pure Water
UYGU 2014
TÜBİTAK
1
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Pure Water and Seawater
49
UYGU 2014
TÜBİTAK
1
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
50
25
01.07.2014
Dry Snow
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Soil
51
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
52
26
01.07.2014
Corn Leaves
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Corn Leaves
53
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
54
27
01.07.2014
Fresnel reflection and transmission
UYGU 2014
TÜBİTAK
Properties of interest include reflection, refraction, transmission
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Perpendicular (horizontal) case
55
UYGU 2014
TÜBİTAK
Reflection coefficient (relates to field strength)
(sometimes represented by Γ, ρ, or r).
R⊥ ≡
Er
n cos θ i − n2 cos θ t
= 1
Ei
n1 cos θ i + n2 cos θ t
= −
sin (θ i − θ t )
=
sin (θ i + θ t ) θ ≠ 0
i
η 2 cos θ i − η 1 cos θ t
η 2 cos θ i + η 1 cos θ t
Transmission coefficient (relates to field strength)
T⊥ ≡
=
2 n1 cosθ i
Et
=
Ei
n1 cosθ i + n 2 cosθ t
2 sin θ t cos θ i
sin (θ i + θ t )
=
θi ≠ 0
2 η 2 cos θ i
η 2 cos θ i + η 1 cos θ t
Note that 1 + R ⊥ = T⊥
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
56
28
01.07.2014
Perpendicular (horizontal) case
UYGU 2014
TÜBİTAK
Reflectivity (relates to power or intensity)
Γ⊥ = R⊥
2
Transmissivity (relates to power or intensity)
(sometimes represented by T)
ϒ⊥ =
or
Re{(cos θ t ) / η 2 }
T⊥
Re{(cos θ i ) / η1}
2
ϒ ⊥ = 1 − Γ⊥
Note that Γ⊥+ϒ⊥= 1 which satisfies the
conservation of energy
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Parallel (vertical) case
57
UYGU 2014
TÜBİTAK
Reflection coefficient (relates to field strength)
R// ≡
=
Er
n cos θ i − n1 cos θ t
= 2
Ei
n2 cos θ i + n1 cos θ t
η 1 cos θ i − η 2 cos θ t
tan (θ i − θ t )
=
tan (θ i + θ t ) θ ≠ 0 η 1 cos θ i + η 2 cos θ t
i
Transmission coefficient (relates to field
strength)
T// ≡
=
Et
2 n2 cos θ i
=
Ei n2 cos θ i + n1 cos θ t
2 η 1 cos θ i
2 sin θ t cos θ i
=
sin (θ i + θ t ) cos(θ i − θ t ) θ ≠ 0 η 1 cos θ i + η 2 cos θ t
i
Note that 1 + R // = T//
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
58
29
01.07.2014
Parallel (vertical) case
UYGU 2014
TÜBİTAK
Reflectivity (relates to power or intensity)
Γ// = R //
2
Transmissivity (relates to power or intensity)
ϒ // =
Re{η 2 cos θ t }
Re{η 1 cos θi }
T//
2
or
ϒ // = 1 − Γ//
Note that Γ//+ϒ//= 1 which satisfies the
conservation of energy
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Reflectivity for Water, Wet Soil, and Dry Soil
59
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
60
30
01.07.2014
Layered Madia
UYGU 2014
TÜBİTAK
Reflection and Transmission for an n-layer medium
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Layered Madia – Forest Floor
61
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
62
31
01.07.2014
Effective dielectric constants of
Soil, humus, and litter layers
UYGU 2014
TÜBİTAK
HUMUS
MINERAL SOIL
(LOAMY SAND)
Bulk dielectric - Real Part
LITTER
Mineral Soil
Humus
Litter
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Shallow Lake Ice Trends
63
UYGU 2014
TÜBİTAK
Play video
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
64
32
01.07.2014
Content
UYGU 2014
TÜBİTAK
Antennas
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Antennas
65
UYGU 2014
TÜBİTAK
Role of antennas
Theory
Antenna types
Characteristics
Radiation pattern – beamwidth, pattern solid angle
Directivity, gain, effective area
Bandwidth
Friis’ transmission formula
Implementations
Dipole, monopole, and ground planes
Horn
Parabolic reflector
Arrays
Terminology
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
66
33
01.07.2014
The role of antennas
UYGU 2014
TÜBİTAK
Antennas serve four primary functions
Spatial filter
directionally-dependent sensitivity
Polarization filter
polarization-dependent sensitivity
Impedance transformer
transition between free space and transmission line
Propagation mode adapter
from free-space fields to guided waves
(e.g., transmission line, waveguide)
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Spatial filter
67
UYGU 2014
TÜBİTAK
Antennas have the property of being more sensitive in one direction
than in another which provides the ability to spatially filter signals from
its environment.
Directive antenna.
Radiation pattern of directive antenna.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
68
34
01.07.2014
Polarization filter
UYGU 2014
TÜBİTAK
Antennas have the property of being more sensitive to one
polarization than another which provides the ability to filter
signals based on its polarization.
Incident
E-field
vector
r
E = ẑ E 0
Dipole antenna
r r
V = h⋅E
r
h = ẑ h
+
_
V = h E0
r r
V = h⋅E
r
h = ẑ h
r
E = ŷ E 0
z
y
x
In this example, h is the antenna’s
effective height whose units are
expressed in meters.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Impedance transformer
69
UYGU 2014
TÜBİTAK
Intrinsic impedance of free-space, E/H
η0 = µ0 ε 0
= 120 π
≅ 376.7 Ω
Characteristic impedance of transmission line, V/I
A typical value for Z0 is 50 Ω.
Clearly there is an impedance mismatch that must be
addressed by the antenna.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
70
35
01.07.2014
Propagation mode adapter
UYGU 2014
TÜBİTAK
During both transmission and receive operations the antenna
must provide the transition between these two propagation
modes.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Antenna Types
71
UYGU 2014
TÜBİTAK
Antennas include wire and aperture types.
Wire types include dipoles, monopoles, loops, rods, stubs,
helicies, Yagi-Udas, spirals.
Aperture types include horns, reflectors, parabolic, lenses.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
72
36
01.07.2014
Radiation pattern
UYGU 2014
TÜBİTAK
Radiation pattern – variation of the field intensity of an
antenna as an angular function with respect to the axis
Three-dimensional representation of the radiation
pattern of a dipole antenna
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radiation Pattern - Characterstics
73
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
74
37
01.07.2014
Beamwidth and beam solid angle
UYGU 2014
TÜBİTAK
The beam or pattern solid angle, Ωp [steradians or sr] is defined as
Ω p = ∫∫ Fn (θ , φ ) d Ω
4π
where dΩ is the elemental solid angle given by
d Ω = sin θ dθ dφ
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Directivity, gain, effective area
75
UYGU 2014
TÜBİTAK
Directivity – the ratio of the radiation intensity in a given direction from the
antenna to the radiation intensity averaged over all directions.
[unitless]
Maximum directivity, Do, found in the direction (θ, φ) where Fn= 1
and
or
Given Do, D can be found
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
76
38
01.07.2014
Directivity, gain, effective area
UYGU 2014
TÜBİTAK
Gain – ratio of the power at the input of a loss-free isotropic antenna to the
power supplied to the input of the given antenna to produce, in a given
direction, the same field strength at the same distance
Of the total power Pt supplied to the antenna, a part Po is radiated out into space
and the remainder Pl is dissipated as heat in the antenna structure. The
radiation efficiency ηl is defined as the ratio of Po to Pt
ηl =
Po
Pt
Therefore gain, G, is related to directivity, D, as
G (θ , φ ) = ηl D(θ , φ )
And maximum gain, Go, is related to maximum directivity, Do, as
Go = ηl Do
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Directivity, gain, effective area
77
UYGU 2014
TÜBİTAK
Effective area – the functional equivalent area from which an antenna
directed toward the source of the received signal gathers or absorbs the
energy of an incident electromagnetic wave
It can be shown that the maximum directivity Do of an antenna is related to an
effective area (or effective aperture) Aeff, by
D0 =
4π
4π
Aeff = 2 ηa Ap
2
λ
λ
where Ap is the physical aperture of the antenna and ηa = Aeff / Ap is the
aperture efficiency (0 ≤ ηa ≤ 1)
Consequently
Aeff =
λ2
λ2
≅
Ω p β xz β yz
[m2]
For a rectangular aperture with dimensions lx and ly in the x- and y-axes, and
an aperture efficiency ηa = 1, we get
β xz ≅ λ l x
[rad]
β yz ≅ λ l y
[rad]
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
78
39
01.07.2014
Bandwidth
UYGU 2014
TÜBİTAK
The antenna’s bandwidth is the range of operating
frequencies over which the antenna meets the operational
requirements, including:
Spatial properties (radiation characteristics)
Polarization properties
Impedance properties
Propagation mode properties
Most antenna technologies can support operation over a
frequency range that is 5 to 10% of the central frequency
(e.g., 100 MHz bandwidth at 2 GHz)
To achieve wideband operation requires specialized
antenna technologies
(e.g., Vivaldi, bowtie, spiral)
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD - Dual band Antenna
79
UYGU 2014
TÜBİTAK
Radar
Band
1.25GHz
Radiometer
Band
1.413GHz
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
80
40
01.07.2014
RADIOMETER BAND (1403-1424MHz)
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
RADAR BAND (1200-1300MHz)
81
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
82
41
01.07.2014
Antenna arrays
UYGU 2014
TÜBİTAK
Antenna array composed of several similar radiating
elements (e.g., dipoles or horns).
Element spacing and the relative amplitudes and phases
of the element excitation determine the array’s radiative
properties.
Linear array examples
Two-dimensional array of
microstrip patch antennas
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Antenna arrays
83
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
84
42
01.07.2014
Antenna arrays
UYGU 2014
TÜBİTAK
Soil Moisture Ocean Salinity
Sentinel 1a
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Antennas- Summary
85
UYGU 2014
TÜBİTAK
Antennas play an important role in microwave remote
sensing systems.
There are both art and science aspects to antennas.
Antenna arrays enable the radiation characteristics to be
changed electronically (i.e., very rapidly) unlike
conventional mechanically-steered antennas.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
86
43
01.07.2014
Antennas - Terminology
UYGU 2014
TÜBİTAK
Antenna – structure or device used to collect or radiate electromagnetic waves
Array – assembly of antenna elements with dimensions, spacing, and illumination sequency such
that the fields of the individual elements combine to produce a maximum intensity in a particular
direction and minimum intensities in other directions
Beamwidth – the angle between the half-power (3-dB) points of the main lobe, when referenced to
the peak effective radiated power of the main lobe
Directivity – the ratio of the radiation intensity in a given direction from the antenna to the radiation
intensity averaged over all directions
Effective area – the functional equivalent area from which an antenna directed toward the source of
the received signal gathers or absorbs the energy of an incident electromagnetic wave
Efficiency – ratio of the total radiated power to the total input power
Far field – region where wavefront is considered planar
Gain – ratio of the power at the input of a loss-free isotropic antenna to the power supplied to the
input of the given antenna to produce, in a given direction, the same field strength at the same
distance
Isotropic – radiates equally in all directions
Main lobe – the lobe containing the maximum power
Null – a zone in which the effective radiated power is at a minimum relative to the maximum effective
radiation power of the main lobe
Radiation pattern – variation of the field intensity of an antenna as an angular function with respect
to the axis
Radiation resistance – resistance that, if inserted in place of the antenna, would consume that same
amount of power that is radiated by the antenna
Side lobe – a lobe in any direction other than the main lobe
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Content
87
UYGU 2014
TÜBİTAK
Radiometry – remote sensing via
microwave emission
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
88
44
01.07.2014
Radiometry – remote sensing via
microwave emission
UYGU 2014
TÜBİTAK
Thermal radiation
Blackbody radiation and Planck’s law
Stefan-Boltzmann law
Emissivity, graybodies, selective radiators
Rayleigh-Jeans approximation
Temperature
Brightness temperature
Apparent temperature
Antenna temperature
Radiative transfer
Extinction (absorption and scattering)
Emission
Apparent temperature of terrain
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Blackbody radiation and Planck’s law
89
UYGU 2014
TÜBİTAK
Using classical physics (mechanics), theories were put forth
by Wilhelm Wien (1893) and Lord Rayleigh (1900) that, in a
piecemeal fashion, agreed well with experimentally
measured radiative emissions.
While the Wein law was valid for shorter (optical)
wavelengths, the Rayleigh law was valid for longer
wavelengths.
In 1905 Lord Rayleigh and Sir James Jeans offered a more
complete theory was presented (Rayleigh-Jeans law) that
again only agreed well with experimental measurements at
long wavelengths.
Max Planck’s blackbody radiation law (1901) accurately
predicted the spectral intensity of electromagnetic radiation at
all frequencies or wavelengths by incorporating quantum
theory.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
90
45
01.07.2014
Blackbody radiation and Planck’s law
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Notation for radiometric quantities
91
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
92
46
01.07.2014
Planck’s blackbody radiation law
UYGU 2014
TÜBİTAK
A blackbody is an idealized, perfectly opaque material that absorbs all the
incident radiation at all frequencies, reflecting none.
To maintain thermal equilibrium, a blackbody is also a perfect emitter.
Bf =
where
2h f 3 h f
e
c2
(
kT
)
−1
−1
Bf = Blackbody spectral brightness, W m-2 sr-1 Hz-1
h = Planck’s constant = 6.63 × 10-34 J s
f = frequency, Hz
k = Boltzmann’s constant = 1.38 × 10-23 J K-1
T = absolute temperature, K
c = speed of light, 3 × 108 m s-1
Note: Only two variables: frequency, f, and temperature, T.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Temperature dependence of emission
93
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
94
47
01.07.2014
Solar spectral irradiance
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Emissivity, graybodies, selective radiators
95
UYGU 2014
TÜBİTAK
Blackbodies transform heat into electromagnetic
energy with perfect efficiency.
Natural targets generally have lower efficiencies and are
sometimes called graybodies.
This reduced efficiency is termed emissivity, e, and is
defined as the ratio of the observed brightness relative to
that of a blackbody at the same temperature.
e(θ , φ ) = B(θ , φ ) Bbb
Since Β(θ, φ) ≤ Bbb, then 0 ≤ e(θ, φ) ≤ 1
A selective radiator denotes a case where emissivity is
frequency or wavelength dependent, e(f) or e(λ).
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
96
48
01.07.2014
Emissivity, graybodies, selective
radiators
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Relating brightness to received power
97
UYGU 2014
TÜBİTAK
To allow for spectrally-dependent
brightness, we introduce spectral
brightness, Bf (θ, φ).
Thus the total power received
by the aperture over a bandwidth ∆f, extending from
frequency f to f+∆f is
P=
Ar
2
∫
f + ∆f
f
∫∫π B (θ , φ ) F (θ , φ ) dΩ df
f
n
4
where the ½ term reflects the fact that only half of the incident
power is detected due to the polarization selectivity of the
antenna.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
98
49
01.07.2014
Relating power and temperature (1/3)
UYGU 2014
TÜBİTAK
From the Rayleigh-Jeans law we know that brightness and temperature
are linearly related at RF and microwave frequencies.
2 f 2 k T 2kT
Bf =
= 2
c2
λ
To apply this to radiometric measurements, consider the experiment
illustrated below.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Relating power and temperature (2/3)
99
UYGU 2014
TÜBİTAK
For a blackbody enclosure at temperature T
Pbb =
Ar
2
∫
f + ∆f
f
∫∫π
2kT
Ar
∫∫π F (θ , φ ) dΩ
Fn (θ , φ ) dΩ df
λ2
4
For narrowband operation, we assume Bf ~ constant over ∆f permitting
Pbb = k T ∆f
λ2
n
4
From antenna theory we know that
∫∫π F (θ , φ ) dΩ = Ω
n
p
= λ2 Ar
4
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
100
50
01.07.2014
Relating power and temperature (3/3)
UYGU 2014
TÜBİTAK
So
Pbb = k T ∆f
which agrees exactly with the noise power from a resistor at temperature T
Pn = k T ∆f
Therefore the power-temperature relationship permits us to speak of
temperatures rather than power or brightness.
Example: for T = 300 K and ∆f = 1 MHz, P = k T ∆f = 4.1 fW (4.1 × 10-15 W) or
-144 dBW (dB relative to 1 W) or -114 dBm (dB relatice to 1 mW).
If R = 50 Ω, then the output voltage will be Vrms = √(R P) = 450 nV.
If R = 1000 Ω, then Vrms = 2 µV.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Brightness temperature
101
UYGU 2014
TÜBİTAK
Having related received power, P, to temperature
P = k T ∆f
and recognizing that emissivity, e, reduces an object’s
brightness, leads us to define an equivalent brightness
temperature, TB
e(θ , φ ) =
TB (θ , φ )
or
T
TB (θ , φ ) = T e(θ , φ )
where T is the absolute physical temperature.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
102
51
01.07.2014
Apparent temperature
UYGU 2014
TÜBİTAK
Bi (θ , φ ) =
2k
λ2
TAP (θ , φ ) ∆f
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Antenna temperature
103
UYGU 2014
TÜBİTAK
The antenna radiometric
temperature, TA, is the resistorequivalent temperature that would
deliver the same output power.
Pn = k TA ∆f = P
P=
Ar
2
2k
∫∫π λ
2
TAP (θ , φ ) ∆f Fn (θ , φ ) dΩ
4
With TAP and TA related as
TA =
Ar
λ2
∫∫π T (θ , φ ) F (θ ,φ ) dΩ
AP
n
4
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
104
52
01.07.2014
Radiative Transfer
UYGU 2014
TÜBİTAK
Change in Intensity = - Extinction + Emission + Scattering into Beam
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Smooth surface scattering and emission
105
UYGU 2014
TÜBİTAK
Specular reflection from a smooth,
planar surface (Fresnel reflection)
Pr (θ1 ; p ) = Γ(θ1 ; p ) Pi (θ1 ; p )
where
Pi = incident power
Γ = specular reflectivity
Pr = reflected power
θ1 = incidence angle
p = polarization state (p = h or v)
For the specular surface it can be shown that the emissivity is
related to the reflectivity as
e (θ1 ; p ) = 1 − Γ(θ1 ; p )
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
106
53
01.07.2014
Rough surface scattering and emission
UYGU 2014
TÜBİTAK
Scattering from a rough surface is
characterized by the bistatic
scattering cross-section per unit
area σ°(θ0, φ0; θs, φs, p0, ps) [unitless]
where
(θ0, φ0) = direction of incident power
(θs, φs) = direction of scattered power
(p0, ps) = polarization state of incident and scattered fields
The emissivity of a rough surface is
e(θ 0 , φ0 ; p ) =1 −
1
[σ °(θ 0 , φ0 ;θ s , φs ; p0 , p0 )
4 π cos θ 0 ∫
+ σ °(θ 0 , φ0 ;θ s , φs ; p0 , ps )] dΩ s
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Brightness temperature of a specular sea surface
107
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
108
54
01.07.2014
Soil emissivity, roughness
UYGU 2014
TÜBİTAK
Angular patterns of the emissivity measured at 1.4 GHz for three bare-soil fields with
different surface roughnesses [Newton and Rouse, 1980].
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Effect of vegetation
109
UYGU 2014
TÜBİTAK
Angular plots of the h-polarized emissivity for (a) a dry soil surface and (b) a very wet
soil surface, covered with vegetation of nadir optical thickness t0. The soil surface is
perfectly smooth.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
110
55
01.07.2014
Effect of Moisture
UYGU 2014
TÜBİTAK
Variation of h-polarized emissivity with soil moisture content for (a) a smooth soil
surface and (b) a moderately rough soil surface.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Ocean Salinity
111
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
112
56
01.07.2014
Sea Ice
UYGU 2014
TÜBİTAK
Incoherent emissivity of sea ice as a function of ice thickness at multiple frequencies.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Content
113
UYGU 2014
TÜBİTAK
Radiometer systems
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
114
57
01.07.2014
Radiometer systems
UYGU 2014
TÜBİTAK
Equivalent noise temperature
Characterization of noise
Noise of a cascaded system
Noise characterization of an attenuator
Equivalent-system noise power at the antenna terminals
Equivalent noise temperature of a superheterodyne receiver
Radiometer operation
Effects of gain variations
Dicke radiometer
Examples of developed radiometers
Synthetic-aperture radiometers
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radiometer Systems
115
UYGU 2014
TÜBİTAK
A radiometer is a very sensitive microwave receiver that
outputs a voltage, Vout, that is related to the antenna
temperature, TA.
Based on the output voltage, the radiometer estimates TA
with finite uncertainty, ∆T, which is referred to as the
radiometer’s sensitivity or radiometric resolution.
Radiometric resolution is a key parameter that
characterizes the radiometer’s performance.
An understanding of the factors affecting radiometer’s
performance characteristics requires an understanding of
noise, radiometer design, and calibration techniques
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
116
58
01.07.2014
Thermal Noise
UYGU 2014
TÜBİTAK
Thermal noise is characterized with a zero mean, 〈Vn〉 = 0,
and is has equal power content at all frequencies, hence it
is often called white noise.
For a conductor with resistance R connected to an ideal
filter with bandwidth B, the output noise power Pn is
Pn = k T B
where k is Boltzmann’s constant (1.38 × 10-23 J K-1), T is the
absolute temperature (K).
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Equivalent noise temperature
117
UYGU 2014
TÜBİTAK
Now replace the noisy resistor with an antenna with
radiometric antenna temperature TA′.
TA′ is the antenna weighted apparent temperature that includes the
self-emission of the lossy antenna.
If the same average power is delivered into the matched
load, then we can relate TA′ to the thermodynamic
temperature T of the resistor.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
118
59
01.07.2014
Combined Radar Radiometer
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD Radiometer Blok Diagram
119
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
120
60
01.07.2014
Temperature Monitoring
UYGU 2014
TÜBİTAK
Side-view
Top-view
Aluminum
plate
FAN
Radar-SW
Thermo-Electric Module
Cold
30dB-Amp
60dB-Amp
Hot Controller
Cal-SW
Locations of the thermistors on the board
The temperature data is
obtained via the Keithley
Multimeter with the 20
channel interface card
installed.
TS91 Series negative
temperature coefficient (NTC)
Thermistors are used.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Temperature Stability Test
121
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
122
61
01.07.2014
Radiometric Linearity
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radiometer Internal Calibration
123
UYGU 2014
TÜBİTAK
xh
ic
xh
xa
TB
xa
Vout
ih
xc
xc
# samples
Vout
Maury Microwave Corporation
Known Calibration Source
7mm Noise Calibration System
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
124
62
01.07.2014
Antenna and Transmission Line
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Antenna Upgrade
125
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
126
63
01.07.2014
Simplified Radiometer Schematic
UYGU 2014
TÜBİTAK
Receiver
T0
TA
αR
αS
TA′
G
VA
TR
TC
TH
Cold
Hot
Temperature Controlled Radiometer Enclosure
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radiometer Calibration
127
UYGU 2014
TÜBİTAK
External
Calibration
AMBIENT MICROWAVE ABSORBER TARGET
Periodic Internal
Calibration
COLD SKY TARGET
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
128
64
01.07.2014
Content
UYGU 2014
TÜBİTAK
Radar systems
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar systems
129
UYGU 2014
TÜBİTAK
Radar measurements
Radar equation
Range resolution
Doppler shift and velocity resolution
Signal fading
Spatial discrimination
Radar system types
Side-looking airborne radar (SLAR)
Synthetic-aperture radar (SAR)
Inverse SAR
Interferometers
Scatterometers
Scattering mechanisms and characteristics
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
130
65
01.07.2014
A brief overview of radar
UYGU 2014
TÜBİTAK
Radar – radio detection and ranging
Developed in the early 1900s (pre-World War II)
• 1904 Europeans demonstrated use for detecting ships in fog
• 1922 U.S. Navy Research Laboratory (NRL) detected wooden ship on Potomac River
• 1930 NRL engineers detected an aircraft with simple radar system
World War II accelerated radar’s development
• Radar had a significant impact militarily
• Called “The Invention That Changed The World” in two books by
Robert Buderi
Radar’s has deep military roots
• It continues to be important militarily
• Growing number of civil applications
• Objects often called ‘targets’ even civil applications
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar System
131
UYGU 2014
TÜBİTAK
Like a radiometer, radar systems use very sensitive
receivers to output a voltage that contains information
about the target.
Unlike a radiometer, the signal that the radar receives does
not originate from the target (emission), rather it is a
scattered version of a signal transmitted by the radar.
Therefore the characteristics of the signal received by
radar may be fundamentally different from the
radiometer signal
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
132
66
01.07.2014
Radar System
UYGU 2014
TÜBİTAK
Radar is an acronym for radio detection and ranging.
Detection addresses the question of whether a target is
present or changing.
Ranging, the ability to measure the range to a target, is
possible as radar provides its own illumination (the
transmitter) unlike a radiometer that provides no range
information
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar System
133
UYGU 2014
TÜBİTAK
The transmitted radar signal may be coherent, polarized,
and modulated in frequency, phase, amplitude, and
polarization.
In addition, the transmit antenna determines the spatial
distribution of the transmitted signal.
While radar system measures only the received signal
voltage as a function of time, signal analysis enables the
extraction of new information about the target including
location,
velocity,
composition,
structure,
rotation,
vibration, etc.
Radar images of 3.5-km asteroid 1999 JM8 at a range of
8.5x106 km with ~ 30-m spatial resolution
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
134
67
01.07.2014
Basic Geometry – Radar Equation
UYGU 2014
TÜBİTAK
Pr =
Pt Gt Ar
[A (1 − f a ) Gts ] , W
(4 π Rt Rr ) 2 rs
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar Scattering Cross Section
135
UYGU 2014
TÜBİTAK
The terms associated with the scatterer may be combined
into a single variable, σ, the radar scattering cross section
(RCS).
σ = Ars (1 − f a ) Gts , m 2
The RCS value will depend on the scatterer’s shape and
composition as well as on the observation geometry.
For bistatic observations
σ (θ 0 , φ0 ; θ s , φs ; p0 , ps ) , m 2
where
(θ0, φ0) = direction of incident power
(θs, φs) = direction of scattered power
(p0, ps) = polarization state of incident
and scattered fields
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
136
68
01.07.2014
Radar equation – Monostatic
UYGU 2014
TÜBİTAK
In monostatic radar systems the transmit and receive
antennas are collocated (placed together, side-by-side) such that
θ0 = θs, φ0 = φs, and Rt = Rr so that the RCS becomes
σ (θ , φ ; p0 , ps ) , m 2
The radar range equation for the monostatic case is
Pr =
Pt Gt Ar
(4 π R )
2 2
σ,W
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar equation – Monostatic
137
UYGU 2014
TÜBİTAK
If the same antenna or identical antennas are used in a
monostatic radar system then
Gt = Gr = G and At = Ar = A
and recognizing the relationship between A and G
4π A
λ2 G
and G = 2
4π
λ
we can write
A=
Pt G 2 λ2 σ
Pt A2 σ
Pr =
=
(4 π ) 3 R 4 4 π λ2 R 4
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
138
69
01.07.2014
Radar equation for extended targets
UYGU 2014
TÜBİTAK
The preceding development considered
point target with a simple RCS, σ.
The point-target case enables simplifying
assumptions in the development.
Gain and range are treated as constants
Now consider the case of extended targets
including surfaces and volumes.
The backscattering characteristics of
a surface are represented by the
scattering coefficient, σ°,
σ° =σ A
where A is the illuminated area.
σ °(θ , φ ; p0 , ps ) , unitless
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar equation for extended targets
139
UYGU 2014
TÜBİTAK
For homogeneous extended area targets (e.g., grass, bare soil, forest,
water, sand, snow, etc.) σ° ≅ constant (though still dependent on θ, φ, and polarization).
Substituting this relationship leads to
λ2 Pt G 2 σ ° ∆A
(4 π ) 3 R 4
where ∆A is determined by the system’s spatial resolution.
The scattering coefficient, σ°, contains target information.
Pr =
Soil moisture
Surface wind speed and direction over water
Ground surface roughness
Water equivalent content of a snowpack
Therefore the accuracy and precision of σ° measurements
are important.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
140
70
01.07.2014
ComRAD : Radar Blok Diagram
UYGU 2014
TÜBİTAK
Radiometer
T
400
SW
D. Coupler
SW
H
R
PreAmp
SW 501
SW
201
V
D. Coupler
Antenna
Network Analyzer
Switch Box
100
SW
SW
Radiometer
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD : Radar Blok Diagram
141
UYGU 2014
TÜBİTAK
HH - POL
Radiometer
400
T
SW
SW
R
SW
201
D. Coupler
SW
H
PreAmp
SW 501
V
D. Coupler
Antenna
Network Analyzer
Switch Box
100
SW
Radiometer
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
142
71
01.07.2014
ComRAD : Radar Blok Diagram
UYGU 2014
TÜBİTAK
HV - POL
Radiometer
T
400
SW
D. Coupler
SW
H
R
PreAmp
SW 501
SW
201
V
D. Coupler
Antenna
Network Analyzer
Switch Box
100
SW
SW
Radiometer
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD : Radar Blok Diagram
143
UYGU 2014
TÜBİTAK
VV - POL
Radiometer
400
T
SW
SW
R
SW
201
D. Coupler
SW
H
PreAmp
SW 501
V
D. Coupler
Antenna
Network Analyzer
Switch Box
100
SW
Radiometer
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
144
72
01.07.2014
ComRAD : Radar Blok Diagram
UYGU 2014
TÜBİTAK
VH - POL
Radiometer
T
400
SW
D. Coupler
SW
H
R
PreAmp
SW 501
SW
201
V
D. Coupler
Antenna
Network Analyzer
Switch Box
100
SW
SW
Radiometer
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD : Radar Blok Diagram
145
UYGU 2014
TÜBİTAK
Internal Cal
Radiometer
400
T
SW
SW
R
SW
201
D. Coupler
SW
H
PreAmp
SW 501
V
D. Coupler
Antenna
Network Analyzer
Switch Box
100
SW
Radiometer
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
146
73
01.07.2014
Radar Calibration
UYGU 2014
TÜBİTAK
Translating the received signal power into a target’s radar
characteristics (cross section or attenuation) requires
radiometric accuracy.
From the radar range equation for an extended target
λ2 Pt G 2 σ ° ∆A
Pr =
(4 π ) 3 R 4
we know that the factor affecting the received signal power
include the transmitted signal power, the antenna gain, the
range to the target, and the resolution cell area.
Uncertainty in these parameters will contribute to the
overall uncertainty in the target’s radar characteristics.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Calibration targets
147
UYGU 2014
TÜBİTAK
Radiometric calibration of the entire radar system may
require external reference targets such as spheres,
dihedrals, trihedrals, Luneberg lens, or active calibrators.
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
148
74
01.07.2014
RCS of some common shapes
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
Radar Calibration
149
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
150
75
01.07.2014
ComRAD : Radar Calibration
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD : Radar Calibration
151
UYGU 2014
TÜBİTAK
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
152
76
01.07.2014
ComRAD : Radar Calibration
UYGU 2014
TÜBİTAK
Circular Plate
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD : Radar Calibration
153
UYGU 2014
TÜBİTAK
Dihedral in Horizontal position
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
154
77
01.07.2014
ComRAD : Radar Calibration
UYGU 2014
TÜBİTAK
Dihedral in Vertical position
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
ComRAD : Radar Calibration
155
UYGU 2014
TÜBİTAK
Dihedral rotated in 45 degrees in CCW
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
156
78
01.07.2014
ComRAD : Radar Calibration
UYGU 2014
TÜBİTAK
Dihedral rotated in 45 degrees in CW
Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi
157
http://bte.bilgem.tubitak.gov.tr/tr/uygu-yo2014
[email protected]
Teşekkürler...
79

Benzer belgeler

G5-1-2 - bilişim teknolojileri enstitüsü

G5-1-2 - bilişim teknolojileri enstitüsü Schematic illustration of scattering from surfaces with different roughness conditions at increasing (from a to c) incidence angles

Detaylı

Lecture Notes File

Lecture Notes File Strength of Transmission System The strength of transmission system affects the competitiveness of the market In other words, in order a customer (load) to be able to wheel power from any supplier,...

Detaylı

Landsat, Sentinels, and Supersites

Landsat, Sentinels, and Supersites Introduction to Microwave Remote Sensing Mehmet Kurum TÜBİTAK BİLGEM Bilişim Teknolojileri Enstitüsü WED.AM1 Uydu Yer Gözlem Uygulamaları Yaz Okulu | 23-27 Haziran 2014 | T ÜBİTAK Gebze Yerleşkesi

Detaylı