tasıt teknolojısı - carpısma testlerı_2016

Transkript

tasıt teknolojısı - carpısma testlerı_2016
MARMARA ÜNİVERSİTESİ
TEKNOLOJİ FAKÜLTESİ
TAŞIT TEKNOLOJİSİ
ÇARPIŞMA TESTLERİ
Abdullah DEMİR, Yrd. Doç. Dr.
Ref. - Road Safety Strategy 2013 — 2020
Based on data for fatal/injury collisions provided by An Garda
Síochána
The most widely used vehicle safety systems
worldwide are those modeled after the New
Car Assessment Program (NCAP), introduced
by the National Highway Traffic Safety
Administration (NTHSA) in the U.S in 1979.
This program has branched into several
regional programs including Australia and
New Zealand (ANCAP), Latin America (Latin
NCAP), China (C-NCAP) and Europe (Euro
NCAP).
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
Crash tests on cars in the European market are most often tested according to
the Euro NCAP standards. These tests are not mandatory, so vehicles are
either tested on initiative by Euro NCAP or by the manufacturers themselves
[1]. The tests used are based on the Whole Vehicle Type Approval
(ECWVTA) directive by the European Commission [7], which dictates the
requirements for making a vehicle legal for sale within the European Union.
Euro NCAP’s performance requirements are higher than those described in
the directive, and are constantly increasing to inspire safety improvements.
Safety ratings are reported by star ratings.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
NCAP Çarpışma Testi ve Derecelendirme
Günümüzde güvenlik bir aracın satışında eskiye oranla daha önemlidir. Müşteriler için
satış kararının en belirleyici unsurudur. Müşterilerin özel araç modellerinin
performansına bağlı olarak güvenilir ve eksiksiz bir biçimde karşılaştırmalı bilgilere
ulaşmaları önemlidir. Kanunen tüm yeni araç modelleri satılmadan önce belirli
güvenlik testlerinden geçmelidir. Yine de yönetmelik yeni araçların güvenliği için
asgari hukuki bir standart belirler, üreticileri bu asgari gereksinimlerin üzerine
çıkma hususunda cesaretlendirme görevi Euro ve Ulusal Karayolu Trafik Emniyeti
Kurumu (NHTSA) Yeni Araç Değerlendirme Programı'na (NCAP) aittir.
Önemli Not: Test prosedürleri açısından Euro ve NHTSA arasında farklar olduğu
unutulmamalıdır.
Ön darbe testi: Ön darbe testi yönetmelik esasına göre Avrupa Geliştirilmiş Araç
Güvenliği Kurulu tarafından geliştirilmiştir, fakat darbe hızı 8 km/h artırılmıştır. Ön
darbe 64 km/h'de (40 mil/h) gerçekleştirilir, araç dengelenmiş deforme olabilen
bariyere çarpar. Cansız mankenler üzerinden alınan değerler, ön koltuktaki yolcuların
güvenliği belirlemek için kullanılır.
Yan darbe testi: Darbe 50 km/h'de (30 mph) gerçekleşir. Yan darbe testi
simülasyonu için aracın sürücü tarafına doğru ön kısmı deforme olabilen bir
vagon çekilir. Sürücü güvenliğini belirlemek için manken üzerinden alınan değerler
kullanılır.
Kia, Hava Yastığı, 2010
NCAP Çarpışma Testi ve Derecelendirme
Kia, Hava Yastığı, 2010
Çarpışma Testi Mankenleri
Cansız mankenler üzerinde defalarca doğrudan çarpışma gerçekleştirilir.
Mankenlerin görevi hayatidir: Kaza simülasyonları, bir kaza esnasında
olası yaralanmaların tümünü göstermek için araç içindeki bir sürücü ve
yolcu ile gerçekleştirilir. Mankenler normal sürücü ve yolcu değildir: Çelik
gövdelidir, duyarlı bir ekipmanla donatılmıştır ve lastikle kaplıdır. Mankenler,
çarpışma esnasında ne olduğu hakkında hayati bilgiler sağlar. Uzuvları tek
tek açıklayan kılavuz, verinin nasıl sağlandığını açıklar.
Baş: Mankenin başı alüminyumdan yapılmıştır ve içi lastikle
doldurulmuştur. İçinde çarpışma esnasında beynin maruz kalabileceği
kuvvetler ve hızlanma verilerini gösteren her biri dik açıyla yerleştirilmiş üç
adet hız ölçer vardır.
Boyun: Çarpma esnasında baş ileriye ve geriye doğru hareket ettiğinde,
boyun üzerindeki bükülme, kopma ve eğilme kuvvetlerini tespit eden
cihazlar vardır.
Kollar: Kollarda herhangi bir alet bulunmaz. Çarpışma testinde kollar
kontrolsüz olarak sallanır, ciddi yaralanmalar nadir görülmesine karşın
kollar için tam bir koruma sağlamak zordur.
Kia, Hava Yastığı, 2010
Çarpışma Testi Mankenleri
Göğüs (ön darbe): Çelik kaburgaya ön darbe esnasında göğüs kafesinin esnemesini
kaydeden bir cihaz takılmıştır. Örneğin emniyet kemerlerinden gelen gibi göğüs
üzerindeki kuvvet büyük olduğunda yaralanma meydana gelir.
Göğüs (yan darbe):Yan darbe mankeninin göğsü diğerlerinden farklıdır, göğüs
basıncını ve bu basıncın hızını kaydetmek için üç kaburga ölçülür.
Karın: Mankene, pelvis kemerine yerleştirilen göstergeler kullanılarak karında
yaralanmaya neden olabilecek kuvvetleri kaydeden sensörler yerleştirilmiştir. Kırığa
veya kalça çıkığına neden olabilen yanal kuvvetleri kaydeder.
Üst Bacak: Bu bölüm pelvis, uyluk kemiği (uyluk) ve dizden oluşur. Uyluk
kemiğindeki yük hücreleri; kırığın veya kalça çıkığının görülebileceği kalça eklemi
dahil tüm bölümlerde yaralanmaya neden olabilecek önden çarpmalar hakkında veri
saptar. Özellikle alt panele çarptığında mankenin dizlerinden iletilen kuvveti
ölçmek için bir 'dizlik' kullanılır.
Alt Bacak: Mankenlerin bacaklarının içerisine takılan göstergeler, kaval kemiğinin
(incik kemiği) ve fibulanın (dizi ayak bileğine bağlar) yaralanma riskiyle birlikte
bükme, kopartma ve eğilme kuvvetlerini de hesaplar. Ön darbe esnasında ayak ve
dizlerin yaralanma riski, sürücünün ayak bölmesindeki esneme ve geriye doğru
hareketi ölçüldükten sonra belirlenir.
Çarpışma Testi Mankenleri
Boyun, ön darbe mankeni
Göğüs, yan darbe manken
Kia, Hava Yastığı, 2010
The Euro NCAP tests have undergone several evaluations to estimate
the effectiveness of the test procedures. These studies show that
every added star represents a 12% reduction in collision fatality
rates [9].
The crash tests conducted by Euro NCAP are [10]:
• Frontal impact into a deformable offset barrier at 64 km/h.
• Car to car side impact into the driver’s door at 50 km/h.
• Pole side impact into rigid pole at 29 km/h.
• Pedestrian impact at 40 km/h.
• Rear impact whiplash injury test
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
These tests include child protection tests and the implementation of
active safety assisting equipment like electronic stability control (ESC), seat
belt reminders, speed limitation devices and anti-lock braking systems (ABS)
[10].
Crash test scores are then declared with respect to and weighed according to:
• 50% - Adult occupant assessment
• 20% - Child occupant assessment
• 20% - Pedestrian assessment
• 10% - Safety assist assessment
Figure 1: Euro NCAP’s weighing of test results from each assessment protocol
to obtain the final score.C
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
Euro NCAP Point Distribution
The Future of Active Safety
Arthur D. Little 2014
Safety Assisting Equipment
Unlike all other Euro NCAP testing
procedures, the safety assist functions
do not require any destructive testing.
The aim with the protocol is promote
standard fitment of safety assisting
equipment such as Electronic Stability
Control (ESC), Anti-Locking Brakes
(ABS), Seat Belt Reminders and Speed
Limitation Devices. The scoring of these
systems is based on primarily the
fitment of such equipment and
secondary on the performance of this
equipment.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
Frontal Impact
Euro NCAP frontal impact tests are performed at an impact velocity of 64
km/h, 8 km/h higher than limits legislated by ECWVTA. The test shall
represent two similar cars colliding with each other in a 40% offset impact,
which is considered as the most common traffic accident resulting in severe
injury or death. 40% meaning that the 40% of the vehicles frontal structure is
struck in the impact.
Figure A.2 Frontal impact crash test setup
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Frontal Impact
The protection level is assessed using a frontal impact crash test dummy
which measure accelerations, forces, deflections and deformations.
Çarpışma
testlerinde Pelvis: Leğen kemiği
kullanılan
mankenler Femur: Uyluk kemiği
(Dummy)
Tibia: Kaval kemiği
Yapılan çarpışma testlerinde
oluşabilecek
yaralanmaları
belirleyebilmek için elektronik
sensörlerle donatılan son derece
gelişmiş mankenler (dummy)
kullanılmaktadır. Aynı zamanda
üretici firmaların önerdiği çocuk
koltukları da araca yerleştirilip
çarpışmalarda
çocukları
koruyup
korumadığı Crash test dummy results are presented
using a five step scale.
belirlenmektedir.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
Reading Text:
In a frontal collision, kinetic energy is absorbed through deformation of
the bumper, the front of the vehicle, and in severe cases the forward section
of the passenger compartment (dash area). Axles, wheels (rims) and the
engine limit the deformable length. Adequate deformation lengths and
displaceable vehicle aggregates are necessary, however, in order to
minimize passenger-compartment acceleration.
Damage to the passenger compartment should be minimized. This
concerns primarily
• dash area (displacement of steering system, instrument panel, pedals,
toe-panel intrusion),
• underbody (lowering or tilting of seats),
• the side structure (ability to open the doors after an accident).
Acceleration measurements and evaluations of high-speed films enable
deformation behavior to be analyzed precisely. Dummies of various sizes
are used to simulate vehicle occupants and provide acceleration figures for
head and chest as well as forces acting on thighs.
Automotive Handbook
Car to Car Side Impact
Car side impact tests are performed by using a movable deformable
barrier as seen in Figure. The impact is centered at the driver’s door
at an impact velocity of 50 km/h.
Figure : Car to car side impact test setup.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Car to Car Side Impact
The aim with the test procedure is to assess any intrusion and occupant
protection obtained from the cars side structure, but also to encourage the
implementation of side airbags. To assess the occupant protection a side impact
test dummy is used. Measures that are recorded are accelerations, forces,
moments and deflections.
Thoraks: Göğüs kafesi
Rib: Kaburga kemiği
Figure: Side impact crash test dummy rating.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”, Stockholm, 2011-01-28
Pole Side Impact
The pole side impact tests goal is to
encourage the fitting of head
protection devices such as side
impact head or curtain airbags and
padding. Since the pole is relatively
narrow, 10’’, or 254 mm, major
intrusion is a common result. The
test is performed by propelling the
vehicle into a rigid pole at 29
km/h, representing the vehicle
skidding into a pole or a tree, see
Figure.
Since 2009 this test is mandatory in
the assessment process, and
focuses on head, chest and
abdomen protection. Before 2009 it
was
an
optional
test
for
manufacturers to demonstrate the
efficiency of their head protection
features.
Figure: Pole side impact test setup
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Pole Side Impact
Figure: Pole side impact crash test dummy rating.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Pedestrian Protection
The pedestrian protection protocol has been a part of Euro NCAP since the start in
1997. Up to 2009 this test had a separate star rating but is now an integral part of the
overall rating scheme seen in Figure A.1. Euro NCAP performs a series of tests to
evaluate the pedestrian protection for both adult and child pedestrians. During the
tests individual vehicle components are assessed to have a better control of the
pedestrian impact locations. A legform is used to test the protection of the lower leg
towards the front bumper, an upper legform to test the protection towards the
leading edge of the bonnet and a child and adult headform to test the protection
towards the bonnet top area and windscreen. The tests shall represent an impact
velocity of 40 km/h.
Figure: Pedestrian impact test setup and rating system.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Whiplash Protection
The whiplash testing procedure is not a crash test involving the actual vehicle, but
instead the seat and head rest assembly. The test is performed with the use of a crash
sled on which the vehicle seat with a crash test dummy is fitted. The sled is then
subjected to three different crash pulses with varying severity; low, medium and
high. The low severity pulse accelerates the sled to approximately Dv=16 km/h in
100ms, and the high severity pulse to approximately Dv=25 km/h in 100ms [23][36].
These pulses are derived from both real world crashes and insurance industry
research. The whole concept of whiplash injury is not yet entirely understood,
especially the injury causing mechanisms of it, but the high frequency of this injury
type has motivated Euro NCAP to include it into its adult occupant protection
protocol since January 2009.
Figure: Rear impact whiplash rating.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Child Protection
The child occupant protection is a part of the frontal and car-to-car side impact testing
procedures, but also addresses usability of the child restraints (CRS). Since it has shown
that many child restraint users fail to secure the restraint safely to the car, Euro NCAP
encourage improvements to child restraint design and the installation of standardized
mountings such as ISOFIX. In the testing, dummies representing 18 month and 3 year
old children are used (Figure 1-2), and the score depends on the child seats dynamic
performance in frontal and side impact tests. Additionally, fitting instructions, airbag
warning labels and the vehicles ability to accommodate the child restraint safely is also
included in the overall scoring.
Figure: Child protection testing
rating scheme of 18 month old child.
Figure: Child protection testing
rating scheme of 3 year old child.
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Child Protection
A- Dynamic Assessment
B- Frontal Impact
C- Side Impact
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
Child Protection
D- Child Restraint Based Assessment
E- Vehicle Based Assessment
David Egertz, Sohrab Kazemahvazi, Stefan Hallström, “Novel Safety Requirements and Crash Test Standards for Light-Weight Urban Vehicles”,
ÖZET….
Fig.: Some of the tests done by manufacturers to ensure that the occupants of their
vehicles will be, so far as is practicable, safe in the event of an accident. At (a) is the
simple basic zero offset frontal impact, at (b) is a 30 offset, at (c) a 40% offset and at
(d) a pole impact test. A side impact test for representing an impact between two
vehicles moving along lines at right angles to each other is shown at (e) while, at (f ), the
vehicle that is struck is stationary. Finally, a rear end impact test is shown at (g).
Automotive Engineering - Powertrain, Chassis System and Vehicle Body, Edited by David A. Crolla
Presented by Ralph Hruschka
MOMENTUM
“Never design appearance only”
Doğrusal momentum (“moment” ile karıştırılmamalıdır!), bir
doğru boyunca hareket eden bir cismin hareket miktarının
(taşıdığı hareketin) bir ölçüsüdür.
Bir parçacığın doğrusal momentumu, eğer cismin hızı v ve kütlesi
m ise, kütle ve hızın
çarpımı olarak tanımlanır.
Momentum p=mv şeklinde ifade edilir. Hız, v, vektörel
olduğundan, p momentum da vektörel bir niceliktir (Bir vektörün
skaler ile çarpımı hatırlanırsa, (skaler.vektör=vektör).
Momentum vektörünün yönü hız ile aynı yönlüdür.
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
SI birim sisteminde birimi ise kg.m/s’dir.
Nasıl ivme cismin hızındaki artışın, enerji de iş yapabilmenin bir
ölçüsü ise, momentum da bir cismin sahip olduğu hareket
miktarının ölçüsüdür.
Momentum kavramını daha iyi anlamak için aynı hıza sahip olan
bir kelebek ile bir kamyonu düşünelim. Bu iki cisim aynı hıza
sahip olmalarına karşın, karşılarına çıkabilecek herhangi bir cisme
verebilecekleri zarar oldukça farklıdır. Bu farkın nedeni,
kütlelerinden dolayı taşıdıkları hareket miktarının farklı
oluşundandır. Dolayısı ile sağduyusal olarak bunu bildiğimiz için
her zaman hızı yavaş da olsa bir kamyonun üzerimize gelmesini
istemeyiz ama kelebek için bunu fazlaca önemsemeyiz.
Şimdi, taşınan hareket miktarı ile yani momentum ile kuvvet
arasında nasıl bir ilişki olduğunu bulmaya çalışalım. Kuvvet ile
momentum ilişkisinin;
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
Şimdi, taşınan hareket miktarı ile yani momentum ile kuvvet
arasında nasıl bir ilişki olduğunu bulmaya çalışalım. Kuvvet
ile momentum ilişkisinin;
şeklinde olduğunu görürüz. Bu, “bir parçacığın doğrusal
momentumundaki değişme hızı, parçacığa etkiyen net
kuvvete eşit” olduğunu ifade eder.
Eğer bir parçacık üzerine etkiyen net kuvvet sıfır ise bu
parçacığın momentumunun zamana göre türevi (değişimi) de
sıfır olur ve dolayısı ile doğrusal momentum sabit kalır, yani
korunur.
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
Çarpışmalar
Kütleleri m1 ve m2, hızları da sırası ile v1
ve v2 olan bir sistemi göz önüne alalım ve
bu iki kütlenin çarpışması durumunda
ilk ve son durumlarının ne olacağına
bakalım.
Eğer sisteme etki eden herhangi bir dış
kuvvet (örneğin sürtünme) yok ise
sistemin momentumu korunur.
Buradan
şu
sonucu
çıkarabiliriz:
yalıtılmış bir sistemin çarpışmadan
önceki (pi) toplam momentumu,
çarpışmadan sonraki (ps) toplam
momentuma eşittir.
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
İki aracın çarpışması: Trafik ışığında durmakta olan
1800 kg kütleli bir araca 900 kg kütleli küçük bir araç
arkadan çarpar ve iki araç birlikte sürüklenir.
Çarpışmadan önce küçük aracın hızı 20 m/s ise,
çarpışmadan sonra birleşik kütlenin (araçların)
sürüklenme hızı ne olur?
Çözüm:
Çarpışmadan önce sistemin momentumu:
pi=m1.v1i +m2.v2i
pi=(1800 kg).0+(900 kg).(20 m/s)=18000 kg.m/s
Çarpışmadan
sonraki
sistemin
momentumu:
ps=(m1+m2).vs
pi=ps
(18000 kgm/s)=(m1+m2)vs
vs=(18000 kgm/s)/(1800 kg+900 kg)=6,67 m/s
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
Bir Boyutta Esnek ve Esnek Olmayan Çarpışmalar
Dış kuvvetlerin olmadığı bir çarpışmada momentumun
korunduğunu biliyoruz. Fakat çarpışmanın türüne bağlı olarak
kinetik enerji sabit kalmayabilir.
Kinetik enerjinin çarpışmadan önce ve sonra aynı olup
olmaması çarpışmanın esnek veya esnek olmadığını
belirlemede kullanılır.
Esnek Çarpışma: Toplam momentum ve toplam kinetik
enerjinin çarpışmadan önce ve sonra sabit kaldığı çarpışmadır.
Esnek Olmayan Çarpışma: Momentumun korunduğu halde
toplam kinetik enerjinin çarpışmadan önce ve sonra aynı
olmadığı çarpışmadır.
Tamamen Esnek Olmayan Çarpışmalar: Çarpışma
sonrasında çarpışan kütlelerin birbirlerine yapışarak ortak bir
v hızı ile hareket ettikleri çarpışmadır.
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
Esnek Çarpışmalar
Bölüm 9: Doğrusal Momentum, Hazırlayan: Dr. H.Sarı; http://eng.ankara.edu.tr/~hsari; Temmuz 2008
Example: Show mathematically why an 80,000 pound
(36,000 kg) big rig traveling 2 mph (0.89 m/s) has the
SAME MOMENTUM as a 4,000 pound (1,800 kg) sport
utility vehicle traveling 40 mph (18 m/s).
Momentum is the product of an object's mass and
velocity. The formula is p = mv. The product of each is
equivalent.
The SI unit for momentum is the kilogram x meter/second
(kg x m/s).
Truck momentum = (36,000 kg)(0.89 m/s) = 32,000 kg x
m/s
SUV momentum= (1,800 kg)(18 m/s) = 32,000 kg x m/s
Show mathematically why a small increase in
your vehicle’s speed results in a tremendous
increase in your vehicle’s kinetic energy.
(For example: doubling your speed from 30 mph
to 60 mph results in a quadrupling of your
kinetic energy.)
The velocity is squared in the equation;
therefore if the speed is first doubled then
squared, its kinetic energy must quadruple to
keep the equation balanced.
KE = 1/2 mv1^2
4KE = 1/2 m(2v1)^2
MOMENTUM
Ref.: Dale Gary, Physics 111: Mechanics Lecture 12, NJIT Physics Department, March 16, 2016
How Good Are the Bumpers?
In a crash test, a car of mass 1.5103 kg collides with a wall and rebounds as
in figure. The initial and final velocities of the car are vi=-15 m/s and vf = 2.6
m/s, respectively. If the collision lasts for 0.15 s, find
(a) the impulse delivered to the car due to the collision
(b) the size and direction of the average force exerted on the car
How Good Are the Bumpers?
In a crash test, a car of mass 1.5103 kg collides with a wall and rebounds as in
figure. The initial and final velocities of the car are vi=-15 m/s and vf = 2.6 m/s,
respectively. If the collision lasts for 0.15 s, find
(a) the impulse delivered to the car due to the collision
(b) the size and direction of the average force exerted on the car
pi  mvi  (1.5 103 kg)(15m / s)  2.25 104 kg  m / s
p f  mv f  (1.5 103 kg )(2.6m / s )  0.39 104 kg  m / s
I  p f  pi  mv f  mvi
 (0.39 104 kg  m / s)  (2.25 104 kg  m / s)
 2.64 104 kg  m / s
p I
2.64 104 kg  m / s
Fav 


 1.76 105 N
t t
0.15s
Conservation of Momentum
A 100 kg man and 50 kg woman on ice skates stand
facing each other. If the woman pushes the man
backwards so that his final speed is 1 m/s, at what
speed does she recoil?
(A) 0
(B) 0.5 m/s
(C) 1 m/s
(D) 1.414 m/s
(E) 2 m/s
Types of Collisions
 Momentum is conserved in any collision
 Inelastic collisions: rubber ball and hard ball
 Kinetic energy is not conserved
 Perfectly inelastic collisions occur when the objects stick
together
 Elastic collisions: billiard ball
 both momentum and kinetic energy are conserved
 Actual collisions
 Most collisions fall between elastic and perfectly inelastic
collisions
Collisions Summary
 In an elastic collision, both momentum and kinetic energy are




conserved
In a non-perfect inelastic collision, momentum is conserved
but kinetic energy is not. Moreover, the objects do not stick
together
In a perfectly inelastic collision, momentum is conserved,
kinetic energy is not, and the two objects stick together after
the collision, so their final velocities are the same
Elastic and perfectly inelastic collisions are limiting cases, most
actual collisions fall in between these two types
Momentum is conserved in all collisions
More about Perfectly Inelastic Collisions
 When two objects stick together
after the collision, they have
undergone a perfectly inelastic
collision
 Conservation of momentum
m 1v1i  m 2 v 2 i  ( m 1  m 2 ) v f
m 1 v1 i  m 2 v 2 i
vf 
m1  m 2
 Kinetic energy is NOT conserved
An SUV Versus a Compact
An SUV with mass 1.80103 kg is travelling eastbound at +15.0
m/s, while a compact car with mass 9.00102 kg is travelling
westbound at -15.0 m/s. The cars collide head-on, becoming
entangled.
Find the speed of the entangled cars
after the collision.
Find the change in the velocity of each
car.
Find the change in the kinetic energy
of the system consisting of both cars.
An SUV Versus a Compact
Find the speed of the entangled cars m  1.80 103 kg, v  15m / s
1
1i
after the collision.
2
m2  9.00 10 kg, v2i  15m / s
pi  p f
m1v1i  m2v2i  (m1  m2 )v f
m1v1i  m2 v2i
vf 
m1  m2
v f  5.00m / s
An SUV Versus a Compact
Find the change in the velocity of each
car.
m1  1.80 103 kg, v1i  15m / s
v f  5.00m / s
m2  9.00 102 kg, v2i  15m / s
v1  v f  v1i  10.0m / s
v2  v f  v2i  20.0m / s
m1v1  m1 (v f  v1i )  1.8 104 kg  m / s
m2 v2  m2 (v f  v2i )  1.8 104 kg  m / s
m1v1  m2 v2  0
An SUV Versus a Compact
Find the change in the kinetic energy
3
m

1
.
80

10
kg, v1i  15m / s
of the system consisting of both cars. 1
m2  9.00 102 kg, v2i  15m / s
v f  5.00m / s
1
1
2
KEi  m1v1i  m2v22i  3.04 105 J
2
2
1
1
2
KE f  m1v1 f  m2 v22 f  3.38 104 J
2
2
KE  KE f  KEi  2.70  105 J
More About Elastic Collisions
 Both momentum and kinetic energy are
conserved
m1v1i  m 2 v 2 i  m1v1 f  m 2 v 2 f
1
1
1
1
2
2
2
m1v1i  m 2 v 2 i  m1v1 f  m 2 v 22 f
2
2
2
2
 Typically have two unknowns
 Momentum is a vector quantity
 Direction is important
 Be sure to have the correct signs
 Solve the equations simultaneously
Elastic Collisions
 A simpler equation can be used in place of the KE equation
1
1
1
1
2
2
2
m 1 v 1 i  m 2 v 2 i  m 1 v 1 f  m 2 v 22 f
2
2
2
2
m 1 ( v 12i  v 12 f )  m 2 ( v 22 f  v 22 i )
v  v
 (v  v )
m 1 ( v 11i i  v 1 f ) ( v21 ii  v 1 f )  m 21(fv 2 f  v 2 2i ) f( v 2 f  v 2 i )
m 1v1i  m 2 v 2 i  m 1v1 f  m 2 v 2 f
m 1 ( v1i  v1 f )  m 2 ( v 2 f  v 2 i )
v1i  v1 f  v 2 f  v 2 i
m 1v1i  m 2 v 2 i  m 1v1 f  m 2 v 2 f
Summary of Types of Collisions
 In an elastic collision, both momentum and kinetic energy are
conserved
v1i  v1 f  v 2 f  v 2 i
m 1v1i  m 2 v 2 i  m 1v1 f  m 2 v 2 f
 In an inelastic collision, momentum is conserved but kinetic
energy is not
 In a perfectly inelastic collision, momentum is conserved,
kinetic energy is not, and the two objects stick together after
the collision, so their final velocities are the same
Conservation of Momentum
An object of mass m moves to the right with a speed v. It
collides head-on with an object of mass 3m moving with
speed v/3 in the opposite direction. If the two objects
stick together, what is the speed of the combined object,
of mass 4m, after the collision?
(A)
(B)
(C)
(D)
(E)
0
v/2
v
2v
4v
Problem Solving for 1D Collisions, 1
 Coordinates: Set up a
coordinate axis and define the
velocities with respect to this
axis
 It is convenient to make your
axis coincide with one of the
initial velocities
 Diagram: In your sketch, draw
all the velocity vectors and
label the velocities and the
masses
Problem Solving for 1D Collisions, 2
 Conservation of Momentum:
Write a general expression for
the total momentum of the
system before and after the
collision
 Equate the two total
momentum expressions
 Fill in the known values
m 1v1i  m 2 v 2 i  m 1v1 f  m 2 v 2 f
Problem Solving for 1D Collisions, 3
 Conservation of Energy: If the
collision is elastic, write a
second equation for
conservation of KE, or the
alternative equation
 This only applies to perfectly
elastic collisions
v1i  v1 f  v 2 f  v 2 i
 Solve: the resulting equations
simultaneously
One-Dimension vs Two-Dimension
Two-Dimensional Collisions
 For a general collision of two objects in two-dimensional
space, the conservation of momentum principle implies
that the total momentum of the system in each direction
is conserved
m 1 v1ix  m 2 v 2 ix  m 1 v1 fx  m 2 v 2 fx
m 1 v1iy  m 2 v 2 iy  m 1 v1 fy  m 2 v 2 fy
Two-Dimensional Collisions
 The momentum is conserved in all directions
m 1 v1ix  m 2 v 2 ix  m 1 v1 fx  m 2 v 2 fx
 Use subscripts for
 Identifying the object
m 1 v1iy  m 2 v 2 iy  m 1 v1 fy  m 2 v 2 fy
 Indicating initial or final values
 The velocity components
 If the collision is elastic, use conservation of kinetic
energy as a second equation
 Remember, the simpler equation can only be used for
one-dimensional situations
v1i  v1 f  v 2 f  v 2 i
Glancing Collisions
 The “after” velocities have x and y components
 Momentum is conserved in the x direction and in the y
direction
 Apply conservation of momentum separately to each
direction
mv m v mv m v
1 1 ix
2 2 ix
1 1 fx
2 2 fx
m 1 v1iy  m 2 v 2 iy  m 1 v1 fy  m 2 v 2 fy
2-D Collision, example
 Particle 1 is moving at
velocity v1i and particle 2
is at rest
 In the x-direction, the
initial momentum is
m1v1i
 In the y-direction, the
initial momentum is 0
2-D Collision, example cont.
 After the collision, the momentum in
the x-direction is m1v1f cos q + m2v2f
cos f
 After the collision, the momentum in
the y-direction is m1v1f sin q + m2v2f
sin f
m 1 v1i  0  m 1 v1 f cos   m 2 v 2 f cos 
0  0  m 1 v1 f sin   m 2 v 2 f sin 
 If the collision is elastic, apply the
kinetic energy equation
1
1
1
m 1 v 12i  m 1 v 12 f  m 2 v 22 f
2
2
2
Collision at an Intersection
A car with mass 1.5×103 kg traveling east
at a speed of 25 m/s collides at an
intersection with a 2.5×103 kg van
traveling north at a speed of 20 m/s. Find
the magnitude and direction of the
velocity of the wreckage after the
collision, assuming that the vehicles
undergo a perfectly inelastic collision and
assuming that friction between the
vehicles and the road can be neglected.
mc  1.5 103 kg, mv  2.5 103 kg
vcix  25m / s, vviy  20m / s, v f  ?  ?
Collision at an Intersection
mc  1.5 103 kg , mv  2.5 103 kg
vcix  25 m/s, vviy  20 m/s, v f  ?  ?
p
p
xi
 mc vcix  mv vvix  mc vcix  3.75 104 kg  m/s
xf
 mc vcfx  mv vvfx  (mc  mv )v f cos
3.75 104 kg  m/s  (4.00 103 kg )v f cos
p
p
yi
 mc vciy  mv vviy  mv vviy  5.00 104 kg  m/s
yf
 mc vcfy  mv vvfy  (mc  mv )v f sin 
5.00 104 kg  m/s  (4.00 103 kg )v f sin 
Collision at an Intersection
mc  1.5 103 kg, mv  2.5 103 kg
vcix  25m / s, vviy  20m / s, v f  ?  ?
5.00 104 kg  m/s  (4.00 103 kg )v f sin 
3.75 104 kg  m/s  (4.00 103 kg )v f cos
5.00 104 kg  m / s
tan  
 1.33
4
3.75 10 kg  m / s
  tan 1 (1.33)  53.1
5.00 104 kg  m/s
vf 
 15.6 m/s
3

(4.00 10 kg ) sin 53.1
The Center of Mass
 How should we define the
position of the moving body ?
 What is y for Ug = mgy ?
 Take the average position of
mass. Call “Center of Mass”
(COM or CM)
The Center of Mass
 There is a special point in a system or object, called the
center of mass, that moves as if all of the mass of the
system is concentrated at that point
 The CM of an object or a system is the point, where the
object or the system can be balanced in the uniform
gravitational field
The Center of Mass
 The center of mass of any symmetric object lies on an axis of
symmetry and on any plane of symmetry
 If the object has uniform density
 The CM may reside inside the body, or outside the body
Where is the Center of Mass ?
 The center of mass of particles
 Two bodies in 1 dimension
xCM
m1 x1  m2 x2

m1  m2

Benzer belgeler