TRASCO® ES: “0” Backlash Coupling

Transkript

TRASCO® ES: “0” Backlash Coupling
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:52
Pagina I
®
TRASCO ES
TRASCO® ES: “0” Backlash Coupling
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:52
Pagina 1
www.sitspa.com
TRASCO® ES: “0” backlash coupling
The main design function of the TRASCO® ES coupling is to
transmit motion while absorbing misalignments and vibrations with
absolute precision and without any backlash whatsoever. The very
compact design makes it a very rational and functional device.
Description
The TRASCO® ES consists of two hubs, which are either made
of high-strength aluminum (up to the 38/45 size) or steel (from
size 42) that are connected with an elastic element.
The hubs are obtained by an accurate machining in order to
achieve extremely precise dimensional characteristics.
The elastic element, which is made of special polyurethane
was developed after considerable research and laboratory
testing, is press-formed by a process which guarantees a high
degree of dimensional accuracy.
The element is available in 4 different hardnesses: 80 Sh. A
(blue), 92 Sh. A (yellow), 98 Sh. A (red), 64 Sh. D (green).
Coupling performance depends on the type of element selected
(see “Technical characteristics” ).
Other element hardnesses are available upon request to
meet special operating conditions, such as high temperatures
and/or high torques, and for providing a high degree of vibration
dampening capability. Please contact our Engineering Office for
help in selecting the appropriate element hardness.
Spider
TRASCO  ES
Hub
Operation
When the polyurethane element is installed in its special seats
between the hubs, it becomes precompressed, thereby providing
the zero backlash feature which characterizes the transmission
performance of this coupling.
With zero backlash, the coupling remains torsionally rigid within
the range of the precompression load, but does permit the
absorption of radial, angular, and axial misalignments as well as
undesired vibrations.
The significantly wide precompressed area of the flexible element keeps the contact pressure against the elastic element low.
Therefore, the element teeth can be overloaded many times
without undergoing any wear or taking a permanent set.
Trasco® ES couplings (037.05)
1
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:52
Pagina 2
www.sitspa.com
Advantages
The TRASCO® ES coupling provides the following advantages:
•
•
•
•
•
•
“zero-backlash” motion transmission
dampening (up to 80%) of vibrations from motor shaft
low heat and electrical conductivity
easy and fast installation
perfect balance (A & AP type)
low moment of inertia (due to compact design and types of materials used).
Main applications
TRASCO® ES couplings are most frequently used with:
•
•
•
•
•
servomotors
robotics
sliding tables
spindle controls for drilling and grinding mandrels
ball-bearing screws
Operating Temperature Range
The operating temperature range for the TRASCO® ES depends on the type of element. For the 92 Sh. A (yellow), the range is
between -40 and +90°C, and for the 98 Sh.A (red), the range is between -30 and +90°C. Peak temperatures as high as 120°C
can be tolerated for brief instances.
High operating temperatures can cause the elastic element to lose a considerable amount of elasticity, thus substantially lowering the
capacity as regards torque.
Therefore, when selecting a coupling, the operating temperature must be carefully considered (see “Technical characteristics”).
ATEX 94/9/EC compliance
It is possibile to ask for specific certification for use in hazardous area according to EC standard 94/9/EC. TRASCO® ES
couplings are available with specific mounting/operating
instruction manual and conformity.
For information, please contact our technical office.
T [°C]
Torsion angle [rad]
2
Trasco® ES couplings (037.05)
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:52
Pagina 3
www.sitspa.com
TRASCO® ES executions
GES F execution
GES M execution
Clamping hub execution with single slot without keyway. Up to size
19/24. Backlash free hub design.
Transmissible torque depends on
bore diameter.
Hub execution with finish bore,
keyway and stopscrew. Not suitable for backlash free drives with
heavy inversions or high start up
frequency.
GESF
GESA - GESA
MP
Fino a 19/24
GESM
GESA - GESAP
GEG
SFESM
Fino a 19/24
Dal 24/28
Clamping hub execution with double slot without keyway. From size
24/28. Backlash free hub design.
Transmissible torque depends on
bore diameter.
GESM
GESM
Fino a 19/24
GESA - GESAP
GESM GES-2M
Con chiavetta, dal tipo 24/28Con chiavetta, fino al tipo 19/24
GESM
GDEaSlF24/28
GESA - GESA
MP
GESM
Con chiavetta, dal tipo 24/28
GES-2M
GESM
Con chiavetta, fino al tipo 19/24
GESM
Fino a 19/24
Dal 24/28
GES M...C execution
GESM GES-2M
Con chiavetta, dal tipo 24/28Con chiavetta, fino al tipo 19/24
GESM
Split camping hub execution for
radial assembly of the coupling
Torque depends on bore diameter.
Execution “C” with keyway, as
option can be delivered for a positive torque transmission with zero
backlash. These executions are
suitable for double cardanic
applications.
GESM
Con chiavetta, dal tipo 24/28
GES A execution
GES-2M
GES AP execution
Execution with locking ring. This
execution is suitable for high
speed and high torque. Screws
mounting from spider side.
Transmissible torque depend on
bore diameter.
GESA - GESAP
GES-2M
GES 2M execution
GES-2M
GESM
GESM
Con chiavetta, dal tipo 24/28
Dal 24/28
Camping hub execution with double slot and keyway. From size
24/28. The camping pressure
eliminate backlash in torque
inversions.
hiavetta, fino al tipo 19/24
GESM
Fino a 19/24
Camping hub execution with single
slot and keyway. Up to size 19/24.
The camping pressure eliminates
backlash in torque inversions.
GEG
SFESM
Fino a 19/24
GESM
Dal 24/28
GES M...C execution
GES M execution
chiavetG
taE,SfM
ino al tipo 19/24
GESM
GESF
GESF
GESM
Fino a 19/24
Execution with locking ring with
high machining accuracy: design
suitable for application on spindles
according to DIN 69002.
GESA - GESA
GPESM
GESF
GESM
Fino a 19/24
Dal 24/28
Trasco® ES couplings (037.05)
3
TRASCO  ES
GESA - GESAP
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:52
Pagina 4
www.sitspa.com
Standard type
located 180° from the key seat - ex. 02 (120° each other - ex. 01).
Both the solid hub and bored hub coupling are generally available from stock for quick delivery.
L
L
t
C
N
S
M
S
I
W [kg]
I
nmax
J [kgm ]
A
[mm]
G
[mm]
L
[mm]
I
[mm]
M
[mm]
Fig .5
N
[mm]
S
[mm]
P
[mm]
c
t
[mm]
Fig.
7
3
7
0,003
0,085 x 10
40.000
14
-
22
7
8
6
1,0
6
M3
3,5
1
9
4
9
0,009
0,49 x 10-6
28.000
20
7,2
30
10
10
8
1,0
2
M3
5
1
14
4
15
0,020
2,8 x 10-6
19.000
30
10,5
35
11
13
10
1,5
2
M4
5
2
19/24
6
24
0,066
20,4 x 10-6
14.000
40
18
66
25
16
12
2,0
3,5
M5
10
2
24/28
8
28
0,132
50,8 x 10-6
10.600
55
27
78
30
18
14
2,0
4
M5
10
2
28/38
10
38
0,253
200,3 x 10-6
8.500
65
30
90
35
20
15
2,5
5,2
M6
15
2
38/45
12
45
0,455
400,6 x 10-6
7.100
80
38
114
45
24
18
3,0
5,6
L
M8
15
2
-6
L
t
STEEL
HUBS
C
t
t
°
C
t
C
L
STEEL HUBS
t
t
t
C
0
12
2.246
x 10-6
6.000
95
46
126
50
26
20
3,0
5,6
M8
20
48
20
60
2,520
-6
3.786 x 10
5.600
105
51
140
56
28
21
3,5
6
M8
25
55
25
70
4,100
9.986 x 10-6
5.000
120
60
160
7/ 1/ C L 22
65 2102030
4,0
9
M10
65
25
80
5,900
18.352 x 10-6
4.600
135
68
185
75
4,5
8,3
M10
S
S
Bore tolerance: H7 - JS9 (DIN 6985/1) keyway
I
M
I
I
Fig .3
N
M
35
S
S
I
I
26
N
M
Fig .5
Fig .4
P
Øa
P
ØA
ØG
ØG
ØF
ØA
N
S
P
S
S
I
I
N
M
0°
12
2
2
ØG
ØF
ØA
2,000
ØF
55
ØA
14
ØG
ØF
42
P
I
ALUMINUM HUBS
ALUMINUM HUBS
L
S
Fig. 2
[min-1]
2
N
M
Fig .4
Hub
F
max
[mm]
S
I
20
2
20
2
ØA
F
min
[mm]
S
M
Fig. 1
Type
N
I
Fig .3
P
ØA
ØG
P
t
C
ØG
ØF
S
I
ØA
ØG
ØF
ØA
P
t
C
0°
12
ØG
ØF
t
L
t
ØF
The hubs of the standard coupling type can be either solid or
have a finished bore, the diameter of which corresponds to any
one of the standard shaft diameters. The grubscrew(s) is (are)
S
I
Fig .3
Order form
TRASCO® ES hub
Solid hub
Type
GES
P
24/28
TRASCO® ES hub
Bore + keyway + set-screw
Type
Bore ∅
GES
F
24/28
210207/ 1/ C L
210207/ 1
F 20
Spider
Type and spider colour
AES
4
24/28 R
Trasco® ES couplings (037.05)
(R = red, G = yellow, etc...)
W
Weight
kg
J
Moment of inertia
nmax
Maximum rpm
kgm2
min-1
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:52
Pagina 5
www.sitspa.com
“M” execution with clamp hubs
S
I
I
N
M
S
S N
I
I
I
I
f
f
Fig. 2
Fig .7
Fig .8
TRASCO  ES
Fig .7
Hub
F
min
[mm]
F
max
[mm]
f
7
3
7
M2
0,35
0,003
0,085 x 10-6
40.000
Type
MS
[Nm]
W [kg]
nmax
[min-1]
J [kgm ]
2
Keyway
position
A
[mm]
G
[mm]
L
[mm]
-
14
-
22
7
8
I
M
N
S
P
t
E
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
Fig.
ALUMINUM HUBS
ALUMINUM HUBS
6
1,0
6
4
15,0
1
9
4
9
M2,5
0,75
0,007
0,42 x 10
28.000
-
20
7,2
30
10
10
8
1,0
2
5
23,4
1
14
6
15
M3
1,4
0,018
2,6 x 10-6
19.000
180°
30
10,5
35
11
13
10
1,5
2
5,5
32,2
1
19/24
10
20
M6
11
0,071
18,1 x 10-6
14.000
120°
40
18
66
25
16
12
2,0
3,5
12
45,7
1
24/28
10
28
M6
11
0,156
74,9 x 10-6
10.600
90°
55
27
78
30
18
14
2,0
4
12
56,4
2
28/38
14
35
M8
25
0,240
163,9 x 10
8.500
90°
65
30
90
35
20
15
2,5
5,2
13,5
72,6
2
38/45
19
45
M8
25
0,440
465,5 x 10
7.100
90°
80
38
114
45
24
18
3,0
5,6
16
83,3
2
3,0
-6
-6
-6
STEEL HUBS
STEEL HUBS
42
25
50
M10
70
2,100
3.095 x 10-6
6.000
-
95
46
5,6
20
78,8
2
48
25
55
M12
120
2,900
5.160 x 10-6
5.600
-
105
21020140
7/ 2/ C L56
51
07/ 2/3,5
CL
28210221
6
21
108,0
2
55
35
70
M12
120
4,000
9.737 x 10-6
5.000
-
120
60
160
65
30
22
4,0
9
26
122,0
2
65
40
80
M14
190
5,800
17.974 x 10
4.600
-
135
68
185
75
35
26
4,5
8,3
27,5 139,0
2
-6
126
50
26
20
From size 7 to 19/24: single slot execution
From size 24/28 to 65: double slot execution
Using hub execution M without keyway, the maximum transmissible torque is the minor between the clamp-hub transmissible
torque and the value stated in the section “Technical
characteristics”.
MS
Screw tightening torque
Nm
W
Weight
kg
J
Coupling moment of inertia
nmax
Maximum rpm
kgm2
min-1
Trasco® ES couplings (037.05)
5
a
S N
S
M
E
ØG
ØG
E
ØG
ØA
ØF
I
I
Fig .6
Fig .6
S
S
f
f
Fig. 1
N
M
P
M
E
S
P
E
I
N
M
E
M
I
t
P
E
ØG
ØEA
ØF
ØG
E
S
S
E
I
N
P
L
L
t
t
P
ØF
ØA
ØF
ØA
S
L
L
t
t
ØA
ØF
L
L
P
down the screws (Ms) must be as given in the table.
The M coupling type is available with or without keyway.
ØE
A
ØF
This type of coupling permits quick, sure fixing, without any
shaft-hub backlash.
With the keyless coupling type, the torque applied for tightening
S
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 6
www.sitspa.com
Recommended M coupling Type Hub Bore Dia. [mm] and Transmissible Torque [Nm], Valid for shaft tolerances k6
∅ 10 ∅ 11 ∅ 12 ∅ 14 ∅ 15 ∅ 16 ∅ 19 ∅ 20 ∅ 22 ∅ 24 ∅ 25 ∅ 28 ∅ 30 ∅ 32 ∅ 35 ∅ 38 ∅ 40 ∅ 42 ∅ 45 ∅ 48 ∅ 50 ∅ 55 ∅ 60 ∅ 65 ∅ 70 ∅ 75 ∅ 80
L
0,7 0,8
1
1,1
9
1,1 1,4
1,7
1,9
2,2
2,5
2,8
3
2,5
2,9
3,3
3,7
4,1
4,6
5
5,8
6,2
6,6
23
P
23
25
27
32
34
36
43
45
25
27
32
34
36
43
45
50
54
58
62
66
79
83
91
100 104 116 124 133 145
79
83
91
100 104 116 124 133 145 158 166 174 187
217 243 261 S278N 304S 330 348 365 391 417 435
I
M
I
299 335 359 383 419 455 479 503 539 575 599 659
28/38
38/45
M
S
I
55
f
65
Fig .6
Fig. 1
GES
AES
6
M
24/28
F 20
24/28 R
Trasco® ES couplings (037.05)
C
TRASCO® ES hub
“M” execution
Type
∅ bore
Keyway
Spider
Type and spider colour
(R = red, G = yellow, etc...)
S N
I
M
Fig .7
Fig. 2
a
S
I
356 387 407 428 458 489 509 560 611 662 713
f
558 586 628 670 697 767 837 907 976 1046 1116
210207/ 2/ C L
Order form
P
ØA
ØF
63
E
P
ØG
57
t
E
I
48
N
E
S
42
ØA
ØF
24/28
ØF
ØA
19/24
L
t
ØG
E
14
t
E
L
7
E
∅4 ∅5 ∅6 ∅7 ∅8 ∅9
ØG
Type
Fig .8
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 7
www.sitspa.com
“A” type - Shrink disc execution
This type of coupling provides excellent kinetic uniformity.
Furthermore, the absence of keys or grubscrews makes it a well
balanced coupling and greatly facilitates installation and removal.
An exact radial/ axial positioning is easy for those applications
L
which require it. The absence of keyways also avoids fretting
corrosion and backlash between the shaft and the hub. This is the
ideal type of coupling for applications requiring precision and/or
high rotational speeds.
L
ØF
ØA
f
f
ØF
ØA
ØF
ØG
ØF
ØG
P
P
S
N
S
M
I
f
f
I
Type
F
min
[mm]
F
max
[mm]
N
S
M
I
Screws
MS
per
locking [Nm]
elements
f
Hub
W [kg]
nmax
J [kgm2]
[min-1]
A
[mm]
ALUMINUM HUBS AND STEEL LOCKING ELEMENT
G
[mm]
220207/ 1/ C L
L
[mm]
I
[mm]
M
[mm]
N
[mm]
S
[mm]
P
[mm]
ALUMINUM HUBS AND STEEL LOCKING ELEMENT
14
6
14
M3
4
1,3
0,049
7 x 10-6
28.000
30
10,5
50
18,5
13
10
1,5
2
19/24
10
20
M4
6
2,9
0,120
30 x 10-6
21.000
40
18
66
25
16
12
2,0
3,5
24/28
15
28
M5
4
6,0
0,280
135 x 10-6
15.500
55
27
78
30
18
14
2,0
4
28/38
19
38
M5
8
6,0
0,450
315 x 10-6
13.200
65
30
90
35
20
15
2,5
5,2
38/45
20
45
M6
8
10,0
0,950
-6
960 2x210
0207/ 1/10.500
CL
80
38
114
45
24
18
3,0
5,6
STEEL HUBS AND LOCKING ELEMENT
STEEL HUBS AND LOCKING ELEMENT
42
28
50
M8
4
35,0
2,300
3.150 x 10-6
9.000
95
46
126
50
26
20
3,0
5,6
48
35
60
M8
4
35,0
3,080
5.200 x 10
8.000
105
51
140
56
28
21
3,5
6
55
38
65
M10
4
71,0
4,670
10.300 x 10-6
6.300
120
60
160
65
30
22
4
9
65
40
70
M12
4
120,0
6,700
19.100 x 10-6
5.600
135
68
185
75
35
26
4,5
8,3
-6
Using hub execution A, the shrink-disc maximum transmissible
torque is the minor between the value stated in the table
below and the value stated in section “Technical characteristics”.
Recommended A coupling Type Hub Bore Dia. [mm] and Transmissible Torque [Nm], valid for shaft tolerances k6
Type
∅ 10
∅ 11
∅ 14
14
10
12
22
19/24
42
46
60
24/28
∅ 15
∅ 16
∅ 17
65
69
74
79
84
66
72
77
82
87
175
255
28/38
38/45
∅ 18 ∅ 19
∅ 20
∅ 22
∅ 24
∅ 25
∅ 28
∅ 30
∅ 32
∅ 35
∅ 38
92
102
113
118
135
185
205
225
235
283
312
326
∅ 40
∅ 42
∅ 45
266
287
308
339
373
367
398
427
471
420
460
500
563
557
∅ 48
∅ 50
515
545
577
620
627
670
714
612
649
687
986
1112
1531
∅ 55
∅ 60
790
850
880
744
801
1140
1185
1284
1580
1772
1840
1960
∅ 65
∅ 70
840
932
1033
1412
1420
2049
1652
1680
1691
2438
2495
2590
88
42
48
55
65
Order form
GES
AES
A
24/28 R
24/28
F 20
TRASCO® ES hub
Execution
(with shrink disc)
Type
∅ bore
Spider
Type and spider colour
(R = red, G = yellow, ecc...)
MS
Screw tightening torque
W
Weight
Nm
kg
J
Coupling moment of inertia
nmax
Maximum rpm
kgm2
min-1
Trasco® ES couplings (037.05)
7
TRASCO  ES
S
I
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 8
www.sitspa.com
“AP” type - Shrink disc execution according to DIN 69002
Precision “zero-backlash” coupling designed for multi spindle
devices on machine tools or controls with reduced mass, such as
short center spindles, multi-centers primary spindles in work sta-
tions, or joined to high speed bearings with limited tolerance
range. It is suitable for very high speeds of rotation (up to speeds
of 50 m/s).
L
L
Ø F3
Ø F1
Ø F H6
Ø F2
Ø FH6
ØA
P
Ø F1
Ø F3
Ø F H6
Ø F2
Ø FH6
ØA
P
I2
S
N
I
S
M
I
Fig .10
I2
S
I
N
S
M
I
Fig .10
220207/ 2/ C L
Hub
FH6
MS
[mm] [Nm]
Type
W [kg]
nmax
J [kgm ]
2
[min-1]
A
[mm]
L
[mm]
I
[mm]
STEEL HUBS AND LOCKING ELEMENT
I2
[mm]
M
[mm]
N
[mm]
S
[mm]
P
[mm]
F1
[mm]
F2
[mm]
F3
[mm]
STEEL HUBS AND LOCKING ELEMENT
14
14
1,89
0,080
11 x 10-6
28.000
32
50
18,5
15,5
13
10
1,5
2
17
17
8,5
19/24 - 37,5
16
3,05
0,160
37 x 10-6
21.000
37,5
66
25
21
16
12
2,0
3,5
20
19
9,5
19/24
19
30,5
0,190
46 x 10-6
220207/ 2/ C L40
21.000
66
25
21
16
12
2,0
3,5
24
22
9,5
24/28-50
24
4,90
0,330
136 x 10-6
15.500
50
78
30
25
18
14
2,0
4
28
29
12,5
24/28
25
8,50
0,440
201 x 10-6
15.500
55
78
30
25
18
14
2,0
4
35
30
12,5
28/38
35
8,50
0,640
438 x 10
13.200
65
90
35
30
20
15
2,5
5,2
40
40
14,5
38/45
40
14,00
1,320
1.325 x 10-6
10.500
80
114
45
40
24
18
3,0
5,6
46
46
16,5
42
42
35,00
2,230
3.003 x 10-6
9.000
92
126
50
45
26
20
3,0
5,6
52
55
18,5
48
45
35,00
3,090
5.043 x 10-6
8.000
105
140
56
50
28
21
3,5
6
52
60
20,5
55
50
69,00
4,740
10.020 x 10-6
6.300
120
160
65
58
30
22
4
9
55
72
22,5
-6
98 Sh. A
64 sh. D
Spindle
TRASCO® ES
size
“AP”
TKN
[Nm]
TKmax
[Nm]
TKN
[Nm]
TKmax
[Nm]
25 x 20
14
12,5
25
16
32
32 x 25
19/24 - 37,5
14
28
17
34
32 x 30
19/24
17
34
21
42
40 x 35
24/28 - 50
43
86
54
108
50 x 45
24/28
60
120
75
150
63 x 55
28/38
160
320
200
400
Order form
GES
AES
8
AP
24/28
F 20
24/28 R
Trasco® ES couplings (037.05)
TRASCO® ES hub
Execution
(with shrink disc DIN 69002)
Type
∅ bore
Spider
Type and spider colour
(R = red, G = yellow, ecc...)
MS
Screw tightening torque
Nm
W
Weight
kg
J
Coupling moment of inertia
nmax
Maximum rpm
kgm2
min-1
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 9
www.sitspa.com
“GESS” double cardanic execution
This execution allows higher misalignments. The 2 spiders allow
a high vibration dampening providing a decrease in drive noise
and longer life of related components (ex. bearings).
The intermediate element is made of aluminum alloy and may be
used in combination with any type of hub execution.
L
S
N
S
M
S
V
H
N
S
S
M
C
S
M
H
Fig.1
N
S
V
H
N
S
M
C
H
Fig .2
Fig.2
Fig .1
ØA
Ø Fa
ØG
Ø Fa
Ø Fa
ØE
ØG
Ø Fa
ØE
L
GESM...
L
[mm]
V
[mm]
STEEL HUBS
3
7
14
–
9
4
9
20
–
25
7
S
[mm]
1
6
–
0,003
GESM...
10
45
5
10
1
8
–
0,007
11
56
8
13
1,5
10
–
16
2
12
18
2
L
L
10
20
40
–
42
25
92
10
24
10
28
55
–
52
30
112
16
28
14
35
65
–
58
35
128
18
20
2,5
38
15
45
80
–
68
45
158
20
24
3
STEEL HUBS
48
25
60
95
75 S
105
85
55
25
70
120
H 110
65
25
75
135
115
N 74 S
M 80
V
56
M
88 C
65
102
75
Fig.
GESM...
0,00000008
1
1
0,024
0,0000004
L
0,000003
18
0,05
0,000013
1
14
27
0,14
15
30
0,22
18
38
20
46
L
1
0,00006
1
0,00013
1
0,35
0,00035
1
S 0,51
N
S 0,0007
S
N
ALUMINUM GESS
S
S 174
S 50N
ØG
19
ØE
ØG
Ø Fa
34
ØE
–
Ø Fa
30
J
[kg m2]
AR...
8
15
45
GESS...
4
6
20
G AR... W
[mm]
[kg]
34
14
42
N
[mm]
ALUMINUM GESS
Ø Fa
7
AR...
20
M
[mm]
N 22S
M
192
24
S 26
N
V
M
28
H280207/ 3/ C LC
H
218
28
252
Fig .1
32
S
3
51
0,67
M
S
S2
N
2
M
V 0,001
M
21
30
3,5
H
4
22
H
60
0,97
C 0,002
35
Fig .1
4,5
26
68
1,43
0,004
H
GESS...
AR..
AR...
GESM...
GESM...
GESM...
Order form
Spacer element
Type
48
W
Weight
kg
J
Coupling moment of inertia
kgm2
280207/ 3/ C L
H
AR...
AR...
AR...
S
GESM...
GESS...
GESS...
N
M
2 Fig .2
AR...
GESS...
S
V
C
AR...
AR...
S
H2
GESM...
GESM...
GESM...
GESS
TRASCO  ES
GESS...
H
[mm]
ØA Ø G
C
[mm]
Ø Fa
A
[mm]
ØE
ØG
Ø Fa
E
[mm]
AR...
Ø FFaa
Ø
Type
GESM...
Fa max
[mm]
ØE
Fa min
[mm]
280207/ 3/ C L
Trasco® ES couplings (037.05)
9
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 10
www.sitspa.com
“GES LR1” execution with intermediate shaft
This zero backlash execution, allows to connect long distance
shafts in applications such as lifting screwjacks, gantry robot etc.
The intermediate shaft is made of steel but may be of different
material for specific need.
The presence of 2 spiders, increases the dampening properties
and allow high misalignements.
L
H
L2
M
S
N
H
S A
dR
E
d
Sez A-A
L
A
H
L2
LR1
M
LZR1
N
H
S A
Dimensions
finished bores
Type
Internal hub
E
H
L
M
N
s
L2
[mm] [mm] [mm] [mm] [mm] [mm] [mm]
Screws
Din912-8.8
M·L
Ms
[N·m]
MT [N·m]
dmin
[mm]
dmax
[mm]
14
4
15
M3x12
1,4
6
30
11
35
13
10
19/24
6
24
M6x15
10
35
40
25
66
16
12
24/28
8
28
M6x20
10
46
55
30
78
18
28/38
10
38
M8x25
25
108
65
35
90
38/45
12
45
M8x30
25
125
80
45
114
TRASCO ES internal hub
Execution
Type
LR1
24
280207/1/CL
Spider
Type
Spider colour “R” red, “V” green, etc.
AES
10
24/28
R
MS
Screw tightening torque
Nm
MT
Transmissible torque moment
Nm
Trasco® ES couplings (037.05)
LR1
min
[mm]
LZR1
[mm]
dR x tightening
[mm]
71
LR1+22
14 x 2.0
110
LR1+50
20 x 3.0
128
LR1+60
25 x 2.5
145
LR1+70
35 x 4.0
180
LR1+90
40 x 4.0
A
Order form
GES
LR1
[mm]
LR1 48
1,5
LZR1
2
82
14
2
96
20
15
2,5
110
24
18
3
138
On request
External hub
dR
E
d
S
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 11
www.sitspa.com
“GES LR3” execution with intermediate shaft
Ideal execution for long distance shaft connections. Torque
transmission is zero backlash. It is used in applications such as
automatic machines, lifting machines, palletizing machines, and
handling machines. Designed for length up to 4 m without
t
H
M
L
A
Ø dR
ØE
Ø dm a x
e
Lzw
Sez A -A
ØD
bearing support (depending on rotation speed). The double slot
execution, allows spider mounting and replacement without
driver/driven machine displacement. All alumnum alloy for a very
low inertia.
I
Lw
A
8
20
M6
0,01304
0,340
3003
0,04481
0,0697
6139
CT
t
H
M
25
A 40
17,5
3
L
49
16
28
M6
10
55
30
22
59
18
14
38
M8
25
0,17629
0,1095
1,243
10936
65
35
25
67
20
38
18
45
M8
25
0,50385
0,2572
3,072
27114
80
45
33
83,5
24
0,5523
4,719
41591
95
50
36,5
93
1,1834
9,591
84384
105
56
39,5
103
22
50
M10
49
48
22
55
M12
86
1,87044
Ø dR
10
28
ØE
Ø dm a x
24
42
L
A
Lzw
[Nm/rad]
0,07625
1,12166
M
E
H
I
L
M
Lw Lw min Lzw
D
t
e
dR
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
Hub 1
MS [Nm]
J1
ØD
0,02002
10 e
4762-8.8
Hub 2 Shaft
J2
J3
Sez A -A
t
H
2
A
26
28
98
1
113
Lw+35
47
8
14,5
40
Lw+44
57
10,5
20
50
131
Lw+50
73
11,5
25
60
163
Lw+66
84
15,5
30
70
180
I
202
Lw+73
94
18
32
80
36
100
Lw
Lw
t
Lw+79 105 18,5
Lzw
M
L
A
3
2
∅ 8 ∅ 10 ∅ 11 ∅ 14 ∅ 15 ∅ 16 ∅ 18 ∅ 19 ∅ 20 ∅ 22 ∅ 24 ∅ 25 ∅ 28 ∅ 30 ∅ 32 ∅ 35 ∅ 38 ∅ 40 ∅ 42 ∅ 45 ∅ 46 ∅ 48 1 ∅ 50 ∅ 55
17
24
21
23
30
32
34
38
40
42
21
23
30
32
34
38
40
42
47
51
53
59
54
58
62
70
74
78
86
93
97
109
117
124
136
148
70
74
78
28
38
Ø dR
19
e
ØE
Ø dm a x
Type
Sez A -A
ØD
Bores and torques for friction
A with hub without keyway [Nm] H
I
I
86
93
97
109
117
124
136
148
156
163 Lw175
42
136
149
155
174
186
198
217
235A
248
260
279
285
297
310
48
199
217
226
253
271
290
317
344
362
380
407
416
434
452
498
Order form
TRASCO ES external hub
Execution
Type
GES
LR3
24
Spider
Type
Spider colour “R” red, “V” green, etc.
AES 24/28
R
Intermediate shaft on request.
MS
Screw tightening torque
J
Coupling moment of inertia
Nm
kgm2
CT
Torsional rigidity
Nm/rad
Trasco® ES couplings (037.05)
190107/ 2/ C L
190107/ 2/ C L
11
TRASCO  ES
19
Screws
DIN
e
Lzw
Sez A -A
ØD
Ø dR
dmin dmax
[mm] [mm]
Torsional
rigidity
Length on
request
Type
Moment
of inertia
3
2
[10 kgm ]
with dmax hub 1
Clamping
ØE
Ø dm a x
Dimensions
finished
bores
2_inglese_01_Xp7:1_Giunti
di trasm_xp5.qxd
J
m=
04/08/2010
A
L
TKN = 48,0 Nm < Tcal
08:53
Pagina 12
TKN = 48,0 Nm < Tcal
[Nm]
JL
m=
JA = J1 + J2
JA
JL
m = 1,5
JL = J3 + J2
JA = J1 + J2
Technical data for intermediate shaft couplings
(GES
1 LR1 - GES
1 LR3)
T =T ⋅
⋅ S = 22,0 ⋅
⋅ 1,5 = 13,2 [Nm]
TS = TAS ⋅
1
1
⋅ S A = 22,0 ⋅
⋅ 1,5 = 13,2 [Nm]
m +1
1,5 + 1
S
AS
A
m +1
1,5 + 1
m = 1,5
TK max = TS ⋅ S Z ⋅ S θ + TK ⋅ S θ ⋅ SD = 13,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 [Nm]
TK max = TS ⋅ S Z ⋅ S θ + TK ⋅ S θ ⋅ SD = 13,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 [Nm]
1,5 = 13,2 [Nm]
Misalignment
TK max = 85,34 Nm < Tcal
Type = 85,Assial
T
34 Nm < TAngular
K max
cal
∆Kw
[°]
14
1,0
∆kr
∆Ka
3,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34[mm]
[Nm]
0,9
19
1,2
0,9
24
1,4
0,9
28
1,5
0,9
38
1,8
0,9
2⋅
2⋅
1
+
CT spider
L intermediate shaft =
1
CT anello
+
L allunga
[Nm / rad]
CT allunga
Radial misalignment
1
CTot =
1
CTot =
∆Kr = (L z − 2 ⋅ H − M) ⋅ tan (∆ Kw)
Angular misalignment = 0,9° per spider(∆ Kw)
[Nm / rad]
L intermediate shaft
L intermediate shaft =
[mm]
L zw − 2 ⋅ L
[ mm]
1000
CT intermediate shaft
L zw − 2 ⋅ L
[ mm]
1000
with Lzw = total coupling length
Selection diagram GES LR3 coupling
ES
G
LR
ES
ES
G
LR
G
ES
G
24
19
38
3
LR 28
3
3
3
LR
3000
2500
2000
rpm [min-1]
m / rad]
m = 1,5
JL = J3 + J2
∆kw
JL = J3 + J2
www.sitspa.com
JA
m=
1500
1000
500
1000
1500
2000
Lw [mm]
12
Trasco® ES couplings (037.05)
2500
3000
3500
4000
L allunga =
L zw − 2 ⋅ L
[ mm
1000
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 13
www.sitspa.com
Technical characteristics
Type
7
9
14
19/24
24/28
28/38
38/45
42
48
55
65
Even after operating for an extended period with a misalignment,
there is still zero backlash because the elastic element is only
stressed by pressure loads.
When an application causes a high degree of misalignment, a
double flexing type coupling can be provided which avoids the
formation of reaction forces.
Please contact our Engineering Office.
Shore
TKN
[Nm]
TKmax
[Nm]
CT stat.
[Nm/rad]
CT din.
[Nm/rad]
Cr
[N/mm]
∆Ka
[mm]
92 Sh.A (yellow)
1,2
2,4
14,3
43
219
0,6
0,1
1
98 Sh.A (red)
2
4
22,9
69
421
0,6
0,06
0,9
0,8
∆Kr
[mm]
∆Kw
[°]
64 Sh.D (green)
2,4
4,8
34,8
103
630
0,6
0,04
92 Sh.A (yellow)
3
6
31,5
95
262
0,8
0,13
1
98 Sh.A (red)
5
10
51,6
155
518
0,8
0,08
0,9
0,8
64 Sh.D (green)
6
12
74,6
224
739
0,8
0,05
92 Sh.A (yellow)
7,5
15
114,6
344
336
1
0,15
1
98 Sh.A (red)
12,5
25
171,9
513
604
1
0,09
0,9
64 Sh.D (green)
16
32
234,2
702
856
1
0,06
0,8
80 Sh.A (blu)
5
10
370
1120
740
1,2
0,15
1,1
92 Sh.A (yellow)
10
20
820
1920
1260
1,2
0,1
1
98 Sh.A (red)
17
34
990
2350
2210
1,2
0,06
0,9
64 Sh.D (green)
21
42
1470
4470
2970
1,2
0,04
0,8
80 Sh.A (blu)
17
34
860
1390
840
1,4
0,18
1,1
92 Sh.A (yellow)
35
70
2300
5130
1900
1,4
0,14
1
98 Sh.A (red)
60
120
3700
8130
2940
1,4
0,1
0,9
64 Sh.D (green)
75
150
4500
11500
4200
1,4
0,07
0,8
80 Sh.A (blu)
46
92
1370
2350
990
1,5
0,2
1,3
92 Sh.A (yellow)
95
190
3800
7270
2100
1,5
0,15
1
98 Sh.A (red)
160
320
4200
10800
3680
1,5
0,11
0,9
0,8
64 Sh.D (green)
200
400
7350
18400
4900
1,5
0,08
92 Sh.A (yellow)
190
380
5600
12000
2900
1,8
0,17
1
98 Sh.A (red)
325
650
8140
21850
5040
1,8
0,12
0,9
0,8
64 Sh.D (green)
405
810
9900
33500
6160
1,8
0,09
92 Sh.A (yellow)
265
530
9800
20500
4100
2
0,19
1
98 Sh.A (red)
450
900
15180
34200
5940
2
0,14
0,9
0,8
64 Sh.D (green)
560
1120
16500
71400
7590
2
0,1
92 Sh.A (yellow)
310
620
12000
22800
4500
2,1
0,23
1
98 Sh.A (red)
525
1050
16600
49400
6820
2,1
0,16
0,9
0,8
64 Sh.D (green)
655
1310
31350
102800
9000
2,1
0,11
92 Sh.A (yellow)
410
820
13000
23100
3200
2,2
0,24
1
98 Sh.A (red)
685
1370
24000
63400
7100
2,2
0,17
0,9
0,8
64 Sh.D (green)
825
1650
42160
111700
9910
2,2
0,12
92 Sh.A (yellow)
900
1800
38500
97200
6410
2,6
0,25
1
98 Sh.A (red)
1040
2080
39800
99500
6620
2,6
0,18
0,9
TRASCO  ES
The following technical characteristics apply to all types of
TRASCO® ES couplings.
When using the M, A and AP versions, check the torque values
given in the table against the allowable hub transmission values
for the respective versions given in the pertinent sections.
TRASCO® ES couplings can withstand axial, radial, and angular
misalignment.
All the technical data in the catalogue are valid for rotation speeds of 1500 rpm and a working temperature of 30 °C. For linear speed over 30 m/s, it is recommended to
balance dynamically the couplings.
Misalignments
Δ Kw
Δ Kr
Δ Ka
Assial
A ssia le
Angular
Disa ssa m e n t o a n g o la re
Radial
TKN
Coupling nominal torque
Nm
TKmax
Coupling maximum torque
Nm
CT
Torsional rigidity
Nm/rad
Cr
Radial stiffness
N/mm
∆Ka
Maximum axial misalignment
mm
∆Kr
Maximum radial misalignment
mm
∆Kw
Maximum angular misalignment
°
Disa ssa m e n t o ra d ia le
Trasco® ES couplings (037.05)
020307/ 1/ C L
13
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 14
www.sitspa.com
Installation and maintenance
1. Carefully clean the shafts
2. Insert the hubs onto shafts being connected. With the M, A
and AP versions, be sure to tighten the screws with the Ms torque value given in the catalogue. Be careful with the A and AP
versions to tighten the screws uniformally and crosswise to the
recommended torque
3. Position the element in one of the two coupling halves
4. Fit together the two coupling halves, making sure the “s”
dimension is properly observed. This must be done to insure
proper elastic element function and long service life, as well
as to assure the coupling is properly insulated electrically
With the A and AP versions, mounting the hubs can be facilitated
by lubricating the shaft contact surfaces with an oil, but do not
use a molybdenum bisulphide based oils.
When mounting the TRASCO® ES coupling an axial thrust is
generated which disappears when the mounting has been
completed to avoid putting axial loads on the bearings.
Note: All rotating parts must be guarded.
14
Trasco® ES couplings (037.05)
The elastic element should be lubricated during mounting
operations to reduce the axial force required during mounting.
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
04/08/2010
08:53
Pagina 15
www.sitspa.com
Selection in according to DIN 740.2
The coupling must be chosen so the applied working loads do not exceed the allowable values whatever the working conditions are.
1. Check the load with respect to the nominal torque
The nominal coupling torque must be greater than or equal to the nominal torque of the drive machine for all working
temperatures.
TKN ≥ TTKKN⋅ S≥θT⋅KS⋅DS θ ⋅ SD
TKN ≥ TK ⋅ S θ ⋅ SD
TKN
≥ TK≥⋅TS θ⋅⋅SSD⋅ S + T ⋅ S ⋅ S
TSK max
S
Z
θ
K
θ
D
TK max ≥ TS ⋅ S Z ⋅ S θ + TK ⋅ ST
θ K⋅ max
D ≥ TS ⋅ S Z ⋅ S θ + TK ⋅ S θ ⋅ SD
1
m
1
m
1
m
(1)
(1) ⋅ S (1)
(1)
(1)
(1)
≥ TSS⋅=⋅ STZT
⋅S
S
≥ T⋅ S ⋅ S Z ⋅⋅ S
SSmax
Motor-side peaks: TTSK =
Driven-side
peaks:
⋅⋅ θST+ALS+T
⋅ ⋅S
= TLS ⋅⋅ SL + T⋅ S
+ TL
K
θ + ⋅T
D
+
TS = TT
TAS
TKL ⋅ S θT⋅TKT
⋅TT
S
max
D= TT
SθA ++ T
AS
L L + TL
L ⋅AS
LSS ⋅
L L
≥ TS ⋅ S
⋅
S
SZ ⋅=
K max AS
θ
K
θ
D
m
+
1
m
+
1
m
+
1
m
+
1
m +1
m
+
1
TK max ≥ TS ⋅ S Z1 ⋅ S θ + TK ⋅ S(1θ) ⋅ SD
m
(1)
1
(1)
(1)
(1) m
(1)
= TAS
⋅ 1 T⋅ S⋅=ST
+ ⋅T
T=S T
= TLS
⋅m ⋅ S⋅ S+L T
+T
A T
L
L
TS = TAS ⋅
⋅ SA + TL TST=S T
⋅
S
+
T
+
T
⋅
S
LS
L
L
AS ⋅
A
L
S
LS
L
L
m
+
1
m
+
1
3. Check the load with respect to
torque
inversions
m1+periodic
1
m
+1
m +11
mm
+1
(1)m
(1)
(1)
(1)
1+
) T
= TAS
⋅max
⋅ m ⋅ SL + TL (1)
T+LS
⋅ S⋅DS
≥1TT⋅ S=⋅AθS
SLD TST = =TLS
≥TKT
T⋅ ⋅KS
S
TTKSmax= T
≥ASTS⋅ ⋅ S Z ⋅ S⋅ S
TKT⋅LS θ T
⋅T
S
ST
LT⋅θ (S
A +
L θ+⋅T
Z+
KDmax
S⋅ ⋅ S Z S⋅S⋅ S
θ ⋅K
θ +
=
T
T
⋅
⋅
S
+
T
By means of resonance
m
+
1
m
+
1
S
AS
A
L
S
LS
L
L
1 +1
m
m +1
(m
1) + 1
m + ⋅1SL + TL (1)
TS below
= TAS ⋅themoperational
⋅ SA + TL interval a few torque
TS = T
LS ⋅
When the resonance frequency is passed rapidly
peaks
will
be
seen.
1⋅ZS⋅ S+θ T
m +1
TSK max≥ T
≥ Tm
+ T⋅KS⋅ S⋅θS⋅ SD
TK max loads
≥ TS ⋅ S
TK ⋅ ST
⋅SS⋅+ZS
Z ⋅ Sbe
θ + compared
θ K⋅ max
D withSthe
θ
K torque
θ
D the coupling can support.
The generated alternating
must
maximum
m
1 ⋅ S 1+ T ⋅(1S) m⋅ S (1)
m
1
(1)
(1)
(1)
≥ TSS⋅ =⋅ ST
SSmax
⋅LITLV⋅R⋅ S
+ T⋅LS
= TLI ⋅⋅ VR + T⋅ LV(1R) + TL
ZAI ⋅⋅T
θ =+
K
θ
D⋅ V + T
V
TS = TT
TTSK max
= TAI≥ ⋅TS ⋅ S Z⋅⋅VSRθ ++TTLK ⋅ S θT⋅TKT
TT
D= TT
≥ TS ⋅ S
S
Rθ +
LI S⋅
S
L
K max AI
Z ⋅m
K
θ
DR
+
1
m
+
1
m
+
1
m
+
1
m +1
m
+
1
TK max ≥ TS ⋅ S1Z ⋅ S θ + TK ⋅ (S
⋅S
m
1) θ m D
(1)
1
(1)
(1)
(1)
(1)
= T⋅AI ⋅ 1 ⋅ V⋅TV+R =T
+Driven-side
T
= T⋅LI ⋅m ⋅ V⋅ V+R T
+T
Motor-side peaks: TS = TAI ⋅
L⋅
L
⋅ VR + TL TST=S T
T
⋅ Vpeaks:
TST=S T
R + TL
AI
RS
L LI
LI
R
L
m
+
1
m
+
1
m1+ 1
+1
m +11
mm
+1
(1) mm
(1)
(1)
(1)
=D TT
⋅ V≥
TT⋅ ≥LIS(θT
TS = TLI ⋅ m ⋅ VR + TL (1)
TKN
⋅ VTRW+ ⋅TSL θ ⋅ STf 0S⋅T,S25
TRVST+KW
=
⋅1)⋅WS⋅f S⋅ S
⋅ ⋅VSR f +⋅ STDL
0KN⋅,25
T1KW
=T
0T,25
AI
S =T
AI ⋅= TKW ≥
KN =
θ D
W+ L
=
T
⋅
⋅
T
T
=
T
⋅
+ 1 ⋅ VR + T(1L)
S
AI m1+ 1
R
S
LI mm
m +1
(1L) m + 1
TS = TAIinversions
⋅ m + ⋅1VR + TL
TS = TLI ⋅ m + ⋅1VR + TL
4. Check the load with respect to nonperiodic torque
m +1
0⋅,S
25
TKN=mT
=+T1KW≥ T
≥ TW⋅ S⋅ S⋅θS⋅ S⋅ S
f ⋅ SD
0
,
25
T
=
T
≥
T
⋅
S
⋅
S
0
,
25
T
KN to KW
W
θ torque
f
Dinversions,
To check the load with respect
nonperiodic
the
equations
must be satisfied:
KN
KW
W following
θ
f
D
≥ TK ⋅ S θm⋅ SD
TKN ≥ T1
S
m
m
1 T≥KNT 1
K ⋅ S θ ⋅T
,25
= =TKW
⋅ S⋅ θV
TAI
⋅W,S
TAIT
⋅⋅W≥VWT
f ⋅S
DV
=TKN
T
TW = TTLIW⋅ = TLI ⋅⋅ Vfi ⋅ Vfi
T0W,25
=T
Vfi WD ⋅ S θ ⋅ S0T
⋅ ⋅θfiS⋅ S
⋅S
KN⋅ = TKW ⋅≥
f0
D
W⋅ =
25
TTKN
T
⋅
S
⋅
AI
fi=WTLI
fi
KW
f
D
+ 1 m +⋅ 1
m +1 m +1
m + 1≥ m
m +1
0,25 TKN
TKN=≥T1KW
T1K ⋅ STθ W⋅ S⋅ DS θ ⋅ Sm
f SD
1
mm ⋅ V
T
=
T
⋅
⋅
V
T
=
T
⋅
TW = TAI ⋅
⋅V
TfiW fi= TLI ⋅ ⋅ S ⋅ S⋅ Vfi+ T ⋅ S T⋅WSW= TLI ⋅LI m +⋅1Vfi fi
T W= TAI ⋅AI m +⋅T
V
TK max m
≥1
T+S1⋅ S Zfi ⋅ S θ + TKW⋅ S θ ⋅ S
K
θ
D
mm
+1
D m+
11 1K max ≥ TS m
m+Z 1 θ
1
TW = TAI ⋅
⋅TVWfi =Driven-side
TW = TLI ⋅ m ⋅ Vfi
Motor-side peaks: TW = TAI ⋅
peaks:
2
⋅ Vfi 2
⋅
V
2TLI ⋅
fi
T
=
T
⋅
⋅
V
T
=
T
⋅
ψ
ψ


ψ
m
m
+
1
W
LI
W
AI
fi




m+ 1 ⋅ Vfi
1≥ +T1 ⋅ S1 +⋅ S +mT+ ⋅1S ⋅ S
m1++1
1 +⋅SVfi Z   θ  K θ D
 
TW = TTAIK max
⋅ m
TW = TLI ⋅ m + ⋅1Vfi
π
2
2π  2 acceleration. m + 1  2π2 2 1
m +1
(1) TL to be added if a torque
m
(1)
V(1) = Vfi =
1
m⋅ 2 + T (1) (1)
Vfi = peak occurs2during
ψ T= T
2 T
2
Tψ
=
TS = TLS ⋅
⋅ SL + TL
SA⋅ SL +L TL
TS= TAS12⋅+ ψ ⋅ SA +2TL fi
2AS ⋅LS 2⋅
2
S
+
1

S




1 +n  2n
ψ
ψ
 + 1  2ψ 


n


m
+
1
m
+
1
m
m
+
1
2
1 − 12−π +π 22 +  
1 −
 2+π  
m
(1)
Vfi =  nR12+2 ψ  2π  VfiV=fi = T  = T1n+R22⋅2ψ21n
ψR2⋅2SπA2+2T2L (π1) 
TS = TLS ⋅
⋅ SL + TL
S
2

n1+
ψ


Calculation coefficients  n2  2π  ψ 


π
2
 1 −n2AS
m
+
1
m
+
1
ψ
  ψ
  2
Vfi = 1 − 2  2 +   VfiV= = 1− 12+2 2+2+π
≥
2 ⋅ Sfi ⋅ S
 ≥nTS2 ⋅S Z ⋅ S
D nnn2RT
Tπ
⋅ S θ + TK ⋅ S θ ⋅ SD
π2
TK max
+
T
2 
π
2
K
max
S ⋅S
2
π
2


2Z
θ
K
θ



nR 

 ψ  Vfi = 1− R n22S
Torsional
rigidity factor
Sθ = Temperature factor
+D = ψ
ψ


−
1
+


2
 1 −nn22 2  + 2ψπ  
 n 2

2
π




TK1max
≥RnT
R J + J
SJ⋅A+S+ZJ⋅ S
J2θ π++ T
JK ⋅ S θ ⋅ SD
JA
30
J
− 30
30  +60
T [°C] – 30 / +30
Positioning
and angular
L A JAL −1
L +80
2R C
nR−1= nR =C
min min−1
m = Am = Speed
nR+40
CTdin A
min
=
Tooling
machines
2mπ =
Tdin
nRπ
Tdin


1
m indicator (1)
acceleration
(
1
)
1
m
J
J
⋅
J
(1)
(1) system
J
J
π
⋅
J
J
J
π
⋅
A
L
L
A
L
L
A
L
TSJ =+TTJAIS ⋅= TLI ⋅ ⋅ VR +⋅TVLR + TL
TS = TLI ⋅
⋅ VR + TL
Sθ
1
1,2 TS = TAI1,4
⋅
⋅ VR1,8
+ TL
30
J
−
1
A
L
A
30
J
J
+
J
30
J
J
+
J
m min
+ A1−1m + 1
m +1
L
nR−1=
CTdinA
m
=A
nR =
CTdinm +A 1 L nmin
m
=
C
min
m
=
10
≥
2-5
3-8
R =
Tdin
1
m
(1)
(1)
AJ⋅JJ
π
π
⋅ LVR + TJJLLA−1
TS =JJLTAJLIL ⋅
⋅ V + TL
30TπS = TAI ⋅JJAAJ⋅+
Sν = Starting frequency factor
30
JJAA +⋅ JJLL
JA+ 1
+L LJm
JA m + 1 R
nR =−1 30
C
min
m
=
−1
n
C
min
=
m
L =
Tdin
R
Tdin
TKKN
TKSJ⋅DJS=+
⋅JSD⋅ 1=,210
⋅=1,248
⋅ 4,0=[Nm]
48,0 [Nm] m =JJ
⋅ S=C
⋅4
nKN
min
==
TKN = TπK ⋅ S θ ⋅ SD J= 10
⋅ 1,2 ⋅ 4 T=
,π0T
[Nm]
θ⋅ 10
θ ⋅Tdin
R48
30
LLJ
LJ
A
A ⋅J
L
L−1≥ T
0-100
101-200
401-800
S/h
JA J⋅T
TJKW
0,25 201-400
TKN = TKW
≥
TW ⋅nSRθ =⋅ 801-1.600
S f ⋅ πSDCTdin 0A,SA25
L =min
L
KN
W ⋅ S θ ⋅ S f ⋅ SD m =
o
S
=
Shock
factor
L
A
J
J
π
⋅
J
A = 10
L ⋅ 1,2 ⋅ 4 = 48,0 [Nm]
L
T
=
T
⋅
S
⋅
S
KN
K
θ
D
SZ
TKN
⋅ SD = 10 ⋅ 1
,2 ⋅T4KN==48
0⋅ S
[Nm]
1
1,2= TK ⋅ S θ1,4
1,6
TK,1,8
⋅ S = 10 ⋅ 1,2 ⋅ 4 = 48,0 [Nm]
0,25θ TKND = TKW
≥ T of ⋅ impact
S θ ⋅ S f ⋅ SD
Type
S L o Sa
T
=
<TW
T
=
48
,
0
Nm
TTKN ==48
,
0
Nm
<
T
KN
KN
cal ⋅ 1,2cal
cal
T
=
T
⋅
S
⋅48
SD,<0=TNm
10
⋅ 41= 48,0 [Nm]
TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4KN
=
48
,
0
[Nm]
K
θ
KN
m
TKN = TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4 = m
48,0 [Nm]
1
=TT
⋅Light
⋅ V,0fi [Nm]
TW = TLI ⋅
⋅ Vfi
S f = Frequency factor
1,5
TW = TAI ⋅
⋅ Vfi TKN = TK ⋅ S θ ⋅ SDT=
TLI=⋅ 48
⋅ Vfi
W 10
⋅W1AI,2=
⋅m
4
T
=
48
,
0
Nm
<
T
m
+1
+
1
m
+
1
m
+
1
KN
cal
TKN = 48,0 Nm < Tcal
TKN = 48,0 Nm < Tcal
m
1 Medium
1,8
f in Hz
>10
≤10 JA
T
⋅ Vfi
TW = TLI ⋅
⋅ Vfi
JTAAI<⋅ T
AW
= J48
,0==
Nm
TKN
m
J
=
J
+
J
KN
cal
m
J
=
J
+
J
m
=
1
,
5
J
=
J
+
J
=
J
=
J
+
J
m
=
1
,
5
J
=
J
+
J
m
= = 48,0 Nm <JATcal
= J1 + J2 Tm
m
+=11,5
m
+
1
2
2
TKN = 48L ,0JNm
T
L
3 L
2 3
2 1
3 <A
2 cal 1 A
Strong
2,2
JL ,0 Nm
JL
Sf
1
f/10
L <T
2
2 TKN = 48
cal
JA
JAJA
ψ J = J + J

ψ


m
=
J
=
J
+
J
JL = J3J+A J=A2 J1 +1 J2m21=+1,5 JL =L J3 +3 J2 2
m=
mm
= 1=,51,5
J1A +=J1 +Jm
2 =
JL
JJLAJL
2π  1
1
1
1
1
1

π
2
2
J


A =
== =
13,2 [Nm]
⋅ 1+,5
J⋅T
,2J=[Nm]
VAS
Tm
,0 ⋅mTS= = T
1,SJ5⋅===T13
2
[Nm]
⋅S
m = 1,5
J⋅+⋅AfiS
J ⋅22
+SJ,02=⋅ =22
1,,520 ⋅ ⋅J1L,J5===J13
JAS,V
JAA == J222
A
AS
fi ⋅
S = T
1 + J2 m
m = 1,5
JJA1A2++=11J1ψ+Am
+ 13J2 3 + 2J2
1,5+2=JJ1AL L m +31 m
Jn212,5+ 11,5
L
JL m + 1 n2 
ψ
ψ

J
1
1
π
2


m
= 1,5
J
=
J
+
J
m
=
J
=
J
+
J


L
−
1
+
1 − 2  +  factor


L
3
2
A
1
2
1
1
1
1

2
=
VTfi ==Torque-Amplification
=⋅ = 13
T = LTV⋅AS
,0 ⋅  2⋅ 1,⋅51
,=
5π13
,[Nm]
2 [Nm]
⋅ S[Nm]
= 22
=13
 22,0
fi ,5
A 22
2
2,0 ⋅ n
TAS ⋅  ⋅ nSRA =
,
2
S
,
2
⋅1
⋅
=

T2⋅Sπ=S TJAS
S
A
R


2

m1+ 1
1,51+ 1 mm
1,51
+11+ 1 n 
+51+ 1
ψ,1
S
−22⋅θAS
1⋅1S,,S
1ZT
T⋅K⋅S4⋅DS1
,+S
0+1,θ⋅2
1S,5,2==⋅ 113
,⋅,22
==T13
⋅2
=
T⋅K1
13
,+612
,34 [Nm]
=613
⋅22
⋅ 1,,25 +⋅ 112
⋅ 4,34
= 85
T
S
,613
1,,2[Nm]
2⋅ 1[Nm]
,2 ⋅,54 ⋅=1,285
[Nm]
=
⋅
+
⋅
= ⋅13
TT
TS⋅ ⋅ S Z ⋅ S⋅ θS+A T=K 22
SST
,
1
,
12
,
5
⋅ S,θ0⋅T
⋅
⋅
+
⋅
TAS
,
5
[Nm]
⋅T
=
2T
AS
max
Z
θ

KDmax
S
K
K max
S ==
,5 =[Nm]
⋅ 1+ 1
π+=1θ 85⋅,1D34
nRA = 22,01⋅,251
m +1
1,5S +=1TAS m
 1⋅ S
m
1
,
5
1
+
+
TS = TAS ⋅
⋅ S A = 22,0 ⋅
⋅ 1,5 = 13,2 [Nm]
TSK max= 13
S⋅1ZS⋅⋅1S
TK,5⋅ S
13
21,⋅61[Nm]
,⋅61,⋅21,+212
4 85
,34
[Nm]
= T,⋅2
+12
= 85
+ 12
= 85
m
+
S ⋅+
θ,1
D1
TK max = TS ⋅ S Z ⋅ S θ + TK ⋅ ST
2⋅,D5S
⋅ 4=
=
T
13
,2,,⋅34
,5 ,⋅51,⋅21,⋅24⋅ =
,34
[Nm]
+θ +T
θ K⋅ max
D
S S⋅ 1
Z,6
θ,2
K ⋅S
θ⋅ ⋅1S
30
J
J
+
J
30
J
J
+
J
−
1
A
L
−
1
A
m = Mass factor m== A
nR = Resonance frequency
n⋅ 1R,,234
CT⋅,m
min
=<T
85
Nm
Nm
T12
TTK max n=R==85
< TcalA ⋅ S LT⋅TS
min
=T ,34
Tdin
max
cal⋅=
K max
cal⋅,S
S
,2,34
[Nm]
==TTK85
⋅ 1,6[Nm]
⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34
,2⋅ ,S
1=
5⋅<S
2
85
⋅ S ZNm
⋅CSTdin
⋅34
==13
ST
Z,6⋅ S
θ +++
KT
θ⋅ 1
D4=
K max
Sπ
θ +T
D = 13
J
J
π
⋅
JL
S
S
S
13
,
2
1
,
6
1
,
2
12
,
5
1
,
2
4
85
,
34
[Nm]
=
⋅
⋅
⋅
⋅
⋅
+
⋅
⋅
=
JKA ⋅ JLθ KTmax
J
L
K max
S
D AL
30⋅ZS +θ T J⋅KAS+ ⋅JθS
JA ,34 [Nm]
TKTmax =n=TS85
13,2−1⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅m
4 == 85
⋅S
Z Nm
θ
K
θ L D =min
C
=
,
34
<
T
R ,34 Nm < Tdin
K max
TK max = 85,34 Nm < Tcal TK max
= 85
Tcal cal
JA ⋅ JL
π
JL
Trasco ES couplings
(037.05)
15
T
=
85
,
34
Nm
<
T
TK maxT= 85
,
34
Nm
<
T
KTmax
cal
cal
T
=
⋅
S
⋅
S
=
10
⋅
1
,
2
⋅
4
=
48
,
0
[Nm]
=
85
,
34
Nm
<
T
=
T
⋅
S
⋅
S
=
10
⋅
1
,
2
⋅
4
=
48
,
0
[Nm]
KN
K
θ
D
K max
cal
KN
K
θ
D
TK max = 85,34 Nm < Tcal
TKN = TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4 = 48,0 [Nm]
[
[
[
[ []
[[ ]]
[[ ]]
[ ]
]
]
]
[
]
[
]
[
]
]
®
TKN = 48,0 Nm < Tcal
TKN = 48,0 Nm < Tcal
TRASCO  ES
2. Check the load with respect to the torque peak
TKN
≥values
TK ⋅ S θ ⋅ SD
TKN ≥ TK ⋅ S θ ⋅ SD
TKN
≥T
K ⋅ S θ ⋅ SD
The maximum coupling
torque
must
be
greater
than
or
equal
the ⋅ torque
occur during operation for all working
T
S + TSpeaks
⋅DS θ ⋅ Sthat
⋅to
TTK max≥≥TTS⋅ S
⋅ S Z⋅ S⋅ S θ + TK ⋅ S θ T
⋅T
SKDmax
SS⋅θS+Z T
D
K ⋅θ S θ ⋅ K
≥ T≥ K⋅Tmax
SS θ⋅ S
⋅≥SZT
KN
D
KN
K
θ
D
temperatures.
TKN ≥ KTK ⋅ S
θ ⋅ SD
2_inglese_01_Xp7:1_Giunti di trasm_xp5.qxd
TKN
04/08/2010
08:53
Pagina 16
T ≥ TT
⋅ S≥ ⋅TS ⋅ S ⋅ ⋅SS
TDKN
≥ DTK ⋅ S θ ⋅ SD
θ ⋅S
≥ KN
TK ⋅ S θK ⋅KNSDθTKNK D≥ TθK T
KN ≥ TK ⋅ S θ ⋅ SD
≥ ⋅TSS θ≥
⋅S
⋅K⋅SS
T
≥TT ⋅ S
+ ZT
⋅S
θZ+
S
⋅S
θ⋅ ⋅S
≥TSKTD⋅+S⋅TθSK⋅Z⋅⋅SS
⋅DSθ θ+
+TDTK⋅ S
⋅ S θ⋅ S
⋅ SD
TK max K≥max
TS ⋅ SKZSmax
⋅ STθKZmax
+ TK ⋅TS
⋅S
K
max
TST
θ max
D≥ TθS S⋅ S Z
K
θ
K
θ
D
www.sitspa.com
Example of selection
1 1
m (1)
1
m
(1)
(1)
(1)
(1)
1 (1) TS =(1)(T
1) m
TL +1T
T = TTLS=⋅⋅STL (1+)⋅ TT⋅Lm
S=L +T⋅ S
TL⋅ +mm
)⋅ T⋅LSA +
T = T T1 ⋅ = TSAS=⋅⋅S
TTAS
⋅S
TL ⋅ SL + T(L1)(1)
A (1+
LS S⋅ ⋅ S
+
T
L ⋅T⋅SS=
SL + T
LS+T
L
TS = TSAS ⋅ AS S m⋅ TS
T
⋅
S==TTAS⋅ A⋅
A
L
S
LS
1T
m
1
+
T
=
T
⋅
⋅ SL + TL
L +T
LS
L
+A1+ m
m
+
1
S
m
+
1
m
+
1
S
AS
A
L
S
LS
m
+
1
m
+
m +1
m +1
m +1
m + 11
≥ ⋅TSS θ≥
⋅S
⋅K⋅SS
T
≥TT ⋅ S
+ ZT
⋅S
θZ+
S
⋅S
θ⋅ ⋅S
≥TSKTD⋅+S⋅TθSK⋅Z⋅⋅SS
⋅DSθ θ+
+TDTK⋅ S
⋅ S θ⋅ S
⋅ SD
TK max K≥max
TS ⋅ SKZSmax
⋅ STθKZmax
+ TK ⋅TS
⋅S
K
max
TST
θ max
D≥ TθS S⋅ S Z
K
θ
K
θ
D
Application
1 (11)
m m
1
m
(1)
(1)
(1)
(1)
(1)
m
TL⋅ +1T1 (1) ⋅ V + TT
TLI ⋅=⋅VT
(1+
) ⋅ T⋅L VR +⋅ V
T = T 1T⋅ = TTSAI =
⋅⋅VTRAI(1+)⋅ TT⋅L V
mm
R=+
L +
(1)S = TLIT⋅S = T
⋅
V
TL ⋅ VR + T(L1)(1)
R LI
T
TS==TTT
R
L
S
TS = TSAI ⋅ AI Sm⋅ V
+
T
T
=
T
⋅
⋅
V
+
T
S= T AI⋅
R+S T L LI
LI⋅R⋅
1m
⋅
V
T
⋅ VR + TL
R1 m
L +T
R1 m
L +1
+
m
+
+
1
m
+
1
S
AI
R
L
S
LI
Servomotor driving a recirculating ball screw
m + 1 on a machine toolmm++11
m +1
mm++11
TK =0,25
10,0
Shock
Type
,25
TW
T 0Nm
= T0T
⋅0S≥,T25
S≥f ⋅⋅S
f θ⋅ S
,KN
25≥=TTT
TSθ=D⋅T
⋅SS
⋅≥SDTf W
⋅ S⋅DS θ ⋅ S f ⋅ SD
KW
WKW
θ ⋅S
KN
0T,25
T22,0
= KN
TNm
⋅=S
KN=W
KW
,25
TDT
T
≥
T
KW ≥ TW ⋅ S
θ0
f ⋅KW
Table
Moment
Inertia
AS = KN
KN
KW
W ⋅ S θ ⋅ Sof
f ⋅S
D
Nominal Torque
Peak Torque
Rpm
Moment of Inertia
Temperature
n = 3.000 1/min
Driven Shaft
J1 = 0,0058 kg·m2
Motor Shaft
1 1
1
T =TW+40°C
1
=
T
⋅
⋅
V
T⋅
= TT
⋅
⋅
V
Tm
11 ⋅ T
⋅V
W =
Vfi =TT
T = T ⋅ AIW ⋅TVWAI = Tfi AI ⋅ TW fi= T
⋅ LI W
AIfi⋅
W
Selection
AI
m +fi1 m +T1Wm =
+ 1TAI ⋅ m + 1⋅ Vfi W
m +1
m +1
LI
Light
J3 = 0,0038 kg·m2
dc = 20 mm h6 (without keyway)
dm = 24 mm h6 (without keyway)
m
m
=TTLI ⋅=⋅VTfi ⋅ T⋅m
Vfi ⋅ V mm ⋅ V
W==TTLI⋅fi⋅
m⋅ V
+Wfi1 mLI+T1m
W
+ 1 LI m + 1⋅ Vfi fi
m +1
m +1
2
2
2
2
2 ψ   ψ 
 1ψ+  1+  1 +  ψ  1 + ψψ 2
1 + element
 2π ( 98
24/28 “A” type ES coupling with “Red” elastic
Sh.
 2π
 A ) 1+    
Vfi = Vfi =V2fiπ= 2  V 2 =  2π  2  22ππ 
Vfi = Standard
2 2
2
fi
2
=
V
2 
 n2  ψ  Tψ2KN222= 60 [Nm]
2
 coupling
2fiψ
ntorque:
 n12− n 1−ψ
 +  + nn2   ψψ 2

+


−
1
2  2 
2 
T
torque:
=
120
[Nm]
1 −  Maximum

−
1
+


+
Kmax



R 2πn   12−π  22π2  +  2π
 n 2 nR   2n

2π  
 R   nn
R  = 0,000135
R 

Hub
Moment
ofπInertia:
[kg·m2]
RJ2 
Couple Transmitted by taper locking ring:
Tcal =
{
92 [Nm] per foro 20 [mm]
113 [Nm] per foro 24 [mm]
30 JA30+ JL JA +30
J
30
JA
−J1 + −J
JJL −+1 Jmin
L
+ J C C 30
J−1A−=
m = mA = JA m =JJA A
1
n30= nR =CJnTdin
m
A+ J 1L
1 A
L
nmin
CTdinJAmin
min
=−⋅min
Tdin
nR = R
CTdin ARπ =JLπ⋅Tdin
m
=
RJ
J
JL J m = J
n
C
min
=
J
π
J
L
L
L
JA ⋅ JLA LR A ππJL A ⋅ JTdin
π
JL
JJA A⋅ J⋅ LJL
JL L
[ [ ] ][ [ ] ] [[ ]]
Load check
⋅S
⋅ ⋅SS
==⋅10
⋅ 1,48
2
[Nm]
T = TT
⋅ S= ⋅TSD=
=Tθ10
⋅D1θ,2
4DT==
0⋅1S
[Nm]
,=
2D⋅48
4= ,10
=0 48
S⋅θ,⋅4
⋅ 1,02 ⋅[Nm]
4 = 48,0 [Nm]
TKN = KN
TK ⋅ S θK ⋅KNSDθT=KNK10
⋅ 1K,2T
⋅T
4KN=⋅ S
48
,K0⋅10
[Nm]
KN = TK ⋅ S θ ⋅ SD = 10 ⋅ 1,2 ⋅ 4 = 48,0 [Nm]
TKN
48<,=0T48
Nm < Tcal
T = 48
,0 =
Nm
<48
Tcal
cal ,0TNm
Nm<<TTcal
TKN = KN
48,0 Nm
<TTKN
TKNKN==48
,0,0Nm
cal
cal
m=
J
J
JA = A m = mA = JJAA = J1 J+AJ=JA2 AJJ1 += JJ2 +
,5J= 1,5 m = 1,5
+ Jm
1,5m = 1m
m
23 +=J
= A JL =1 JJJL3JJ=2+A=JJ=32JJJ+L1+J+=J2 JJJ2m
L3 ==J1
,5 JLJ2L==J3J3++
J
Jm
JAL = JJ1 +m
m = 1,5
J2 2
2=
JL
A
1
2
L
JL
JLJL
1 1
1
1 1 1 1
0 ⋅⋅ 1,,50⋅ S
[Nm]
⋅ S,01⋅=⋅ S22
⋅=1,2522[Nm]
=⋅ 113
T = T T1 ⋅ = TSAS=⋅⋅S
= 13
,5 ,=211
13
,2⋅ 1[Nm]
⋅ T22
A ,=
13
[Nm]
⋅+,,=
AS
A1
TS = TSAS ⋅ AS S m⋅ T
S+A1 =T
22
0
51122
,⋅21
[Nm]
⋅S=+=AT1T
⋅
=113
AS
A=
m
1Sm
,⋅5S+
+T
22,0,0⋅ ⋅
,2,2[Nm]
⋅
⋅ 1,5,5==13
1
,
5
m +1
1,5 +AS1 mm++11 A1,5 + 1 1,15,5++11
TSKTD⋅+S
13T
1
1
,52,6⋅+
12
,4,+
52=12
= ⋅TSS θ=
⋅S
⋅K⋅SS
⋅ SS
⋅S
⋅ 11,85
⋅⋅,⋅4
T
,2 ⋅=1
,S
,2⋅13
,1
1⋅,1
2
34
[Nm]
=TT ⋅ S
+ ZT
⋅S
=⋅TθS13
⋅ 1,=2
+,612
θZ+
,2⋅85
,5[Nm]
,=2+
412,=34
⋅,2
⋅2
⋅85
θ⋅ ⋅S
,26
11,2
,585
1,34
2 ⋅ 4[Nm]
+6
⋅⋅,S
=
⋅[Nm]
= 85,34 [Nm]
θ S⋅ ,S
TK max K=max
TS ⋅ SKZSmax
2ZK⋅ 1Z⋅⋅,S
6⋅DSθ⋅θ1θ+
,θ5θ⋅,⋅2S
1
,⋅34
⋅ STθKZmax
+ TK ⋅TS
⋅S
=13
K
max
K⋅ S
D⋅ 4
TST
TD+K 12
θ max
D==T13
K
S
D = 13,2 ⋅ 1,6 ⋅ 1,2 + 12,5 ⋅ 1,2 ⋅ 4 = 85,34 [Nm]
85,=34
Nm
<Nm
Tcal< T Nm < T
T
=T85,34
Nm
< Tcal
TK=<max
,K34
cal
TK max K=max
85,34K max
Nm
Tcal 85
max = 85,34
cal
TT
K max = 85,34 Nm < Tcal
Coupling nominal torque
Nm
nR
Resonance speed
TK
Motor-side nominal torque
Nm
CT
Torsional rigidity
Nm/rad
TKmax
Coupling maximum torque
Nm
MT
Transmissible torque moment
Nm
TS
Motor peak torque
Nm
SA
Motor-side shock factor
TAS/TAI Driver-side peak torque
Nm
SL
Driven-side shock factor
TL
Nm
SZ
Start frequency factor
Nm
Sθ
Temperature factor
Sf
Frequency factor
TW
Torque with reversal of the machine
Nm
TKW
Torque with reversal transmissible by the coupling
Nm
TCal
Hub-shaft connecton maximum torque
Nm
Acceleration delivered torque
TLS/TLI Driven-side peak torque
16
min-1
TKN
VR
Resonance factor
Vfi
Torque amplification factor
m
Mass factor
JA
Motor-side inertia
JL
Driven-side inertia
Ψ
Dampening factor
Trasco® ES couplings (037.05)
(∆ Kw) (∆ Kw)
SD(∆ Kw)
Torsional
rigidity
Kw) factor
(∆ Kw)
(∆(∆Kw)
kgm2
kgm2

Benzer belgeler

METALDRIVE® Disc Couplings

METALDRIVE® Disc Couplings Particularly maximum speed must not exceed the permissible value. Dynamic balancing (optional) allows higher speeds. Permissible speed could be limited by the weight and critical speed of spacers. ...

Detaylı